Exploration to Expand Into the East Pilbara

15.08.2024 | GlobeNewswire

HIGHLIGHTS

- Novo Resources signs a Determination Wide Aboriginal Heritage Protection Agreement with the Nyamal Aborigin
- The Agreement paves the way for Novo to commence further exploration activities at the priority Bamboo and Mi
- A heritage site avoidance survey has been completed to facilitate drill testing of the Bamboo gold trend, including
- Surface mapping and sampling has commenced at the Miralga Project, following up on porphyry style and intrus • Rock chip samples collected by Novo at Gully Washer (Miralga Project) associated with a mineralised breccia ar
- The footwall of the mineralised gossanous outcrop at Gully Washer returned four
 - > 2,000 g/t Ag rock chip samples along 100 m of strike1.

Field photographs from exploration programs at Bamboo (left) and Miralga (right)

Commenting on the latest exploration programs in the East Pilbara, Novo Executive Co-Chairman and Acting CEO Mike Spreadborough said "We are pleased to have reached an agreement with the Nyamal Aboriginal Corporation and thank them for their ongoing support of Novo and our exploration endeavours on their land. The terms of this agreement attest to the strong relationship Novo has with the Nyamal People.

Novo looks forward to advancing its exploration in the region, as we continue key activities across the priority Bamboo and Miralga Projects."

¹ Refer to Appendix 1 for assay results.

VANCOUVER, British Columbia, Aug. 15, 2024 -- Novo Resources Corp. (Novo or the Company) (ASX: NVO) (TSX: NVO) (OTCQX: NSRPF) is pleased to advise that a Determination Wide Aboriginal Heritage Protection Agreement (the Agreement) has been signed between Novo and the Nyamal Aboriginal Corporation (NAC). The execution of this Agreement streamlines the interactions between Novo and the Nyamal People and confirms Novo's commitment to open, honest and transparent dealings with the Traditional Owners of the Pilbara Region.

The Agreement with NAC covers a large part of the East Pilbara District and allows Novo to conduct non ground disturbing surface works including mapping and surface geochemistry, specifically targeting the priority Bamboo and Miralga Projects. A cultural heritage site avoidance survey took place at Bamboo on 6 and 7 August 2024 to enable drill testing, with a final report expected later in the month.

The Agreement also provides for compensation payments for the benefit of the Traditional Owners which are customary and in line with normal commercial terms for similar agreements of this nature.

EAST PILBARA DISTRICT

The East Pilbara District encompasses Novo tenements around the townships of Marble Bar and Nullagine (Figure 1) and fall within the Nyamal and Palyku Native Title Determination areas.

10.12.2025 Seite 1/13 Approximately 1,500 sq km of prospective and under explored tenure around Marble Bar is currently being advanced by mapping, geochemical surveys and geophysical/remote sensing interpretation. The large landholding comprises orogenic and intrusion-related gold targets, including porphyry / intermediate sulphidation epithermal-style targets at Gully Washer and Shady Camp West on the Miralga Project. A new target style now includes a series of sanukitoid-like intrusions which are evident along a major structural corridor trending along the Nullagine and Bamboo / Strattons projects. Unusual wire gold has been identified in proximity to one of these intrusions at Strattons.

Figure 1: East Pilbara District

Bamboo - Strattons

The Bamboo and Strattons Projects are located approximately 60 km east of Marble Bar. Regional exploration programs completed by Novo and previous explorers, have identified several gold anomalous zones within the Apex Basalt of the Warrawoona Group. The Apex Basalt is the host to orogenic gold prospects along strike, including the Bamboo Creek mining centre (Figure 2), where total historical production is estimated to be over 220,000 ounces at 8.7 g/t Au².

Figure 2: Bamboo - Strattons Projects showing mapped or interpreted intrusion targets

The tenure contains a series of 1.77 Ga Bridget Suite intrusions as part of a 150 km north-northwest trend (Figure 2). Soil sampling completed by Novo has returned anomalous gold results in proximity to multiple intrusions some of which are emplaced into the otherwise unmineralised Upper Fortescue sequences, suggesting mineralisation is related to their emplacement. During field work - surface gold (Figure 3) was detected in the form of wire gold in proximity to one of these intrusions.

The Bridget Suite intrusions range in composition from hornblende monzogranite to quartz monzonite and associated hornblende porphyry dykes; and as such they postdate the Archean orogenic mineralisation events associated with gold deposits in the Mosquito Creek and Mallina Basins.

² Refer to the <u>Calidus Resources Ltd.</u> (ASX: CAI) ASX news release dated 19 February 2024 available at www.asx.com.au. Novo has not conducted data verification (including as that term is defined in National Instrument 43-101 *Standards of Disclosure for Mineral Projects*) in respect of the data/information set out in that news release under the JORC Code 2012 or NI 43-101.

With the new Nyamal Agreement now in place, Novo intends to conduct detailed mapping and soil sampling over 2 km strike of the Apex Basalt and two Bridget Suite intrusions to identify drill targets for RC drill testing.

Figure 3: Photos of fine native gold with an unusual wire-like habit, found in proximity to an intrusion at Bamboo.

Cautionary Statement. Visual occurrence of surface gold cannot be taken as representative of bedrock mineralisation and no assaying of the occurrence has been undertaken. Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations.

Miralga Project

10.12.2025 Seite 2/13

The Miralga Project is located 30 km west of Marble Bar. The project is located on the eastern flank of the North Pole Dome where exploration in the 1970s and 1990s focussed on porphyry-style and epithermal vein-style mineralisation within the Panorama Formation. Known porphyry mineralisation is present outside of Novo's tenure at Miralga Creek B (Figure 4), where Au-Ag-Cu mineralisation is associated with a stock-like Archaean porphyry, high-level dykes and epithermal veins.

Geophysical and remote sensing interpretation, coupled with review of existing geochemical datasets, identified several porphyry targets on Novo's tenure where some targets have seen little to no historical exploration. Anomalies were defined using airborne magnetics and radiometric surveys (particularly potassium anomalies), sentinel and satellite imagery, along with normalising base metal geochemical data from the 1970s to 1990s. Porphyry and intrusion-related targets have now been defined over 25 km strike (Figure 4).

Three targets were investigated in the field, two of which require significant follow-up - Gully Washer and Shady Camp West.

Gully Washer is a precious and base-metal rich breccia and vein array related to a felsic porphyry stock which outcrops over 275 m and is up to 35 m width (Figure 5). Rock samples collected by Novo in 2021 returned peak results of 14.8 g/t Au, 10,083 g/t Ag (342 oz/t Ag), 3.8% Cu, 28.3% Pb and 3.6% Zn³ (results are not necessarily representative of mineralisation in the district).

High-grade mineralisation is located along the flanks of the gossanous porphyry and related to a maximum six-metre-wide zone of malachite-bearing breccia on both hangingwall and footwall positions of the intrusion (Figure 6). The footwall of the mineralised gossanous outcrop returned four > 2,000 g/t Ag rock chip samples along 100 m of strike, including one sample of over 1 % Ag.

Exploration by Novo has included a handheld Niton XRF soil grid and reconnaissance mapping which defined intense alteration zones overlapping a 1 km long NW trending Cu soil anomaly (Figure 5). The Gully Washer breccia is centered in the approximate middle of the broader Cu anomaly and alteration zone.

Immediately east of Gully Washer, stream sediment sampling has yielded a peak assay of 266 ppb Au in an area with distinct color anomalism on airborne imagery (Figure 5).

Figure 4: Miralga Project showing mapped or interpreted intrusion targets

Additional mapping, alteration studies, and surface soil and rock chip sampling is planned for Q3 2024 to better delineate high grade mineralisation defined to date, to close off existing soil anomalism, to follow-up the highly anomalous stream sediment sample and to understand the scope of the broader intrusion related target.

Figure 5: Gully Washer prospect map showing rock sample results.

Figure 6: Mineralised gossan on the southern porphyry margin looking east. Sample R00988 (taken at the

10.12.2025 Seite 3/13

³ Refer to Appendix 1 for assay results.

position of the central front sample bag) returned assays of 4.6 ppm Au, 99 ppm Ag, and 1.4% Pb⁴.

⁴ Refer to Appendix 1 for assay results

Shady Camp West was defined in the 1980s, with broad surface mapping, rock chip sampling and costeaning defining Cu-Au-(Mo) enriched porphyry and intense alteration of the porphyry and adjacent host basalt (AMAX Australia 1980, 1981). Information disclosed in annual exploration reports filed by AMAX Australia Limited in 1982⁵ that are available on the Western Australian Department of Energy, Mines, Industry Regulation and Safety's ("DEMIRS") website (WAMEX Reports), indicate that best costean sampling results include 30 m @ 631 ppm Cu and 100 m @ 461 ppm Cu, with peak assays of 1,350 ppm Cu and 0.32 g/t Au in an altered and potentially leached porphyry. Rock chip results included maximum values of 1.3 g/t Au and 12.5% Cu associated with the northern and southern margins of the rhyodacite intrusive (AMAX Australia 1980, 1981). Information disclosed in the WAMEX Reports will assist Novo with exploration targeting.

Cautionary Statement. The exploration results contained in the WAMEX Reports have not been reported in accordance with the JORC Code or NI 43-101 and a Competent Person/Qualified Person has not done sufficient work to disclose the exploration results in accordance with the JORC Code 2012 or NI 43-101. It is possible that following further evaluation and/or exploration work that the confidence in the prior reported exploration results may be reduced when reported under the JORC Code 2012 or NI 43-101. Novo confirms that nothing has come to its attention that causes it to question the accuracy or reliability of the results included in the WAMEX Reports, but Novo has not independently validated those results and therefore is not to be regarded as reporting, adopting or endorsing those results. No assurance can be given that Novo will achieve similar results as part of its exploration activities at Shady Camp West.

Shady Camp West was prioritised by Novo for investigation due to a large radiometric potassium anomaly extending over 2.2 km north to south (Figure 7) and discrete magnetic lows and highs associated with an intense colour anomaly on airborne imagery.

Work undertaken by Novo includes rock chip sampling, grid pXRF soil sampling and reconnaissance mapping. Geological mapping identified a suite of felsic porphyries intruding mafic and intermediate volcanics. Intense alteration and associated weathering products include kaolinitic clay and limonite, with silicification around quartz vein stockworks.

Indicative results from handheld Niton XRF soil sampling on 160 m x 40 m spaced E-W lines highlighted a >100 ppm coherent Cu anomaly over 1.2 km long, and open to the north, coincident with potassium alteration, magnetic complexity and maximum quartz veining (Figure 7).

The pXRF readings are not verified by an independent laboratory and are not considered to be a proxy or substitute for laboratory analysis. A single orientation line of -80# soil samples which were analysed by an independent laboratory has defined a weak Au and Mo anomaly correlating with pXRF Cu anomalies, with peak results of 26 ppb Au, 3.7 ppm Mo, 100 ppm As, 250 ppm Cu and 130 ppm Zn⁶. Results may not be representative of mineralisation in the district.

Novo intends to conduct detailed alteration and vein mapping, soil sampling and follow-up ground geophysics if warranted, to generate multi-element geochemistry data and geophysical anomalies to determine whether porphyry style mineralisation exists. This program will be conducted over several weeks in Q3 2024.

10.12.2025 Seite 4/13

_

⁵ Refer to Amax Australia Limited 1982 Shady Camp Well Prospect Final Report - WAMEX Open File Data Report A11565.

⁶ Refer to Appendix 1 for assay results.

Figure 7: Shady Camp West highlighting geophysical anomalies (left) and pXRF soil Cu geochemical anomalies (right). The potassic anomaly over 2.2 km strike partially overlaps with intense clay alteration of porphyries and host basalt (light colouration on the imagery). Coherent Cu anomalism is open and untested to the north and correlates with maximum quartz veining and weak Au and Mo anomalism in soils.

ANALYTIC METHODOLOGY

Rock chip samples of 1 - 3 kg were submitted to Intertek commercial Genalysis ("Intertek") in Perth, Western Australia where they were dried and crushed to -3 mm and pulverized to 75 μ m or better (prep code SP64), with a > 85% pass, then assayed for Au by 50 g charge fire assay FA50/OE and for 48 elements using four acid digest - MS finish (4A/MS). Elements that reported above the upper detection limit for 4A/MS were reanalysed using method 4AH/OE. A minimum of 2 CRM standards relevant for the style of mineralisation and 2 blanks were submitted per 100 samples.

Soil samples were sieved to < 80 mesh and submitted to Intertek for aqua regia to analyse for 33 elements. A minimum of 2 CRM standards, 2 blanks and 4 field duplicates were submitted per 100 samples.

Stream sediment samples were sieved to < 0.9 mm and submitted to Intertek where they were dried and pulverized to 75 μ m or better (prep code SP02), with a > 85% pass, then analysed for aqua regia for 33 elements. In addition, the samples are analysed via BLEG (Bulk Leach Extractable Gold) 500 g cyanide leach with MS finish for Au, Pt, Pd and Ag.

pXRF readings of soils and rock chips were taken using a Niton XLT5 model and were used to aid field interpretation and identification of anomalous target mineralogy and pathfinder elements. The Niton pXRF instrument was calibrated daily and checked against reference material four times per 100 samples and at the start and end of each day.

The Niton pXRF uses an x-ray fluorescence tube to take an immediate reading over a small surface area. It is used to obtain an indicative value of certain elements to assist with exploration targeting. The pXRF readings are not verified by an independent laboratory, are not considered to be a proxy or substitute for laboratory analysis. Results may not be representative of mineralisation in the district.

Except as otherwise noted in this news release, there were no limitations to the verification process and all relevant data was verified by a qualified person/competent person (as defined in National Instrument 43-101 *Standards of Disclosure for Mineral Projects* (NI 43-101) and the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC 2012, Appendix 2) respectively), by reviewing QAQC performance of inserted reference material and the analytical procedures undertaken by Intertek.

Authorised for release by the Board of Directors.

CONTACT

Investors: North American Queries: Media:

Mike Spreadborough Leo Karabelas Cameron Gilenko +61 8 6400 6100 +1 416 543 3120 +61 466 984 953

info@novoresources.com leo@novoresources.com cameron.gilenko@sodali.com

QP STATEMENT

Mrs Karen (Kas) De Luca (MAIG), is the qualified person, as defined under NI 43-101 *Standards of Disclosure for Mineral Projects*, responsible for, and having reviewed and approved, the technical information contained in this news release. Mrs De Luca is Novo's General Manager Exploration.

JORC COMPLIANCE STATEMENT

The information in this report that relates to exploration results in the East Pilbara District is based on

10.12.2025 Seite 5/13

information compiled by Mrs De Luca, who is a full-time employee of Novo Resources Corp. Mrs De Luca is a Competent Person who is a member of the Australian Institute of Geoscientists. Mrs De Luca has sufficient experience that is relevant to the style of mineralisation and the type of deposits under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mrs De Luca consents to the inclusion in the report of the matters based on her information in the form and context in which it appears.

FORWARD-LOOKING STATEMENTS

Some statements in this news release may contain "forward-looking statements" within the meaning of Canadian and Australian securities law and regulations. In this news release, such statements include but are not limited to planned exploration activities and the timing of such. These statements address future events and conditions and, as such, involve known and unknown risks, uncertainties and other factors which may cause the actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the statements. Such factors include, without limitation, customary risks of the resource industry and the risk factors identified in Novo's annual information form for the year ended December 31, 2023 (which is available under Novo's profile on SEDAR+ at www.sedarplus.ca and at www.asx.com.au) in the Company's prospectus dated 2 August 2023 which is available at www.asx.com.au. Forward-looking statements speak only as of the date those statements are made. Except as required by applicable law, Novo assumes no obligation to update or to publicly announce the results of any change to any forward-looking statement contained or incorporated by reference herein to reflect actual results, future events or developments, changes in assumptions or changes in other factors affecting the forward-looking statements. If Novo updates any forward-looking statement(s), no inference should be drawn that the Company will make additional updates with respect to those or other forward-looking statements.

ABOUT NOVO

Novo is an Australian based gold explorer listed on the ASX and the TSX focused on discovering standalone gold projects with > 1 Moz development potential. Novo is an innovative gold explorer with a significant land package covering approximately 6,700 square kilometres in the Pilbara region of Western Australia, along with the 22 square kilometre Belltopper project in the Bendigo Tectonic Zone of Victoria, Australia.

Novo's key project area is the Egina Gold Camp, where De Grey Mining (ASX: DEG) is farming-in to form a JV at the Becher Project and surrounding tenements through exploration expenditure of A\$25 million within 4 years for a 50% interest. The Becher Project has similar geological characteristics as De Grey's 12.7 Moz Hemi Project¹. Novo is also advancing gold exploration at Nunyerry North, part of the Croydon JV (Novo 70%: Creasy Group 30%), where 2023 exploration drilling identified significant gold mineralisation. Novo continues to undertake early-stage exploration across its Pilbara tenement portfolio.

Novo has also formed lithium joint ventures with both Liatam and SQM in the Pilbara which provides shareholder exposure to battery metals.

Novo has a significant investment portfolio and a disciplined program in place to identify value accretive opportunities that will build further value for shareholders.

Please refer to Novo's website for further information including the latest Corporate Presentation.

Appendix 1

Surface sample results for the Miralga Project, listing elements relevant to this mineralisation style (All sample locations are GPS located on MGA_2020 zone 50.)

10.12.2025 Seite 6/13

Sample ID	Туре	Prospect	Au (2222)	Ag	Cu	Pb	Zn	Sb	Easting	Northing
·		·		(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	_	_
	-	Gully Washer Gully Washer		125	3,588 1,692	10,965 64,918	5,504	118		7,665,836 7,665,839
	•	Gully Washer		2	86	461	611	110		7,665,985
	-	Gully Washer		3	124	768	365	11		7,665,895
	•	-				700				
	-	Gully Washer		2	117 159	129	120	12		7,665,884
	•	Gully Washer		4			968	12	•	7,665,843
	-	Gully Washer Gully Washer		40	3,464 366	9,508	10,334			7,665,839
	•	Gully Washer		19 1	32	9,870	23,730 423	45 15		7,665,876
	•	•		1		203				7,665,885
	•	Gully Washer		131	575	596	11,812			7,665,874
	-	Gully Washer		2,130	14,857					7,665,878
	•	Gully Washer		2,409		10,857	2,241			7,665,880
	-	Gully Washer		2,013	33,529		4,970	,	•	7,665,882
	•	Gully Washer		173	1,659	1,995	•	248		7,665,884
	•	Gully Washer		34	376	1,714		30		7,665,881
	-	Gully Washer		88	1,517	5,158	•	285		7,665,881
	•	Gully Washer		177	5,691	14,239				7,665,878
	-	Gully Washer		188	350	6,439	702	71	•	7,665,879
	•	Gully Washer		51	103	2,083	•	79	•	7,665,877
	•	Gully Washer		28	850	2,651	5,314	151		7,665,876
	•	Gully Washer		3	37	235	489	14		7,665,877
	•	Gully Washer		10,083		283,103		1,774		7,665,861
	-	Gully Washer		48	220	4,525	554	138		7,665,859
	•	Gully Washer		130	501	2,863	1,827	413		7,665,849
	-	Gully Washer		12	454	6,575	5,159	12	•	7,665,887
	•	Gully Washer		3	122	138	181	7		7,665,888
R00986	•	Gully Washer		22	827	•		45		7,665,852
R00987	•	Gully Washer		7	444	1,745	2,649	10		7,665,847
R00988	•	Gully Washer		99	325	14,262	538	481		7,665,850
R00989	-	Gully Washer		20	102	3,012	122	81		7,665,851
R00990	•	Gully Washer		10	451	3,383		81		7,665,851
R00991	-	Gully Washer		5	172	1,783	3,002	15		7,665,852
R00992	•	Gully Washer		10	549	2,786	3,868	155		7,665,855
R00993	-	Gully Washer		9	150	754	1,631	22	•	7,665,853
R00994	•	Gully Washer		14	111	431		42		7,665,851
R00995	-	Gully Washer		14	168	1,906	4,004	40	757,594	7,665,851
R00996	•	Gully Washer		7	238			26	757,596	7,665,846
R00997	-	Gully Washer		51	303	3,789	1,918	406		7,665,839
R00998	Rock Chip	Gully Washer	0.06	30	60	6,225	255	92	757,581	7,665,843
R00999	Rock Chip	Gully Washer	0.09	19	70	1,516	349	43	757,561	7,665,838
R01000	Rock Chip	Gully Washer	0.87	96	186	3,413	432	658	757,559	7,665,837

Sample ID	Type	Project	Au	Ag	Cu	Pb	Zn	Мо	Fasting	Northing
Campio ID	1) 0	e Project Au (ppb) (am Miralga 2.0 (am Miralga 0.5 ((ppm)	(ppm)	(ppm)	(ppm)	(ppm)	_acang rioraning	
NVO-16206	Stream	Miralga	2.0	0.05	65	7	70	0.3	764,097	7,662,491
NVO-16207	Stream	Miralga	0.5	0.03	54	5	53	0.4	764,115	7,662,484
NVO-16208	Stream	Miralga	2.0	0.06	73	7	84	0.7	764,154	7,662,359
NVO-16209	Stream	Miralga	2.0	0.03	72	6	79	0.5	764,254	7,662,245
NVO-16210	Stream	Miralga	2.0	0.03	69	5	82	0.5	764,259	7,662,234

10.12.2025 Seite 7/13

NVO-16224 Stream	Miralga 1.0	0.03	59	6	66	0.3	764,071	7,662,120
NVO-16225 Stream	•	0.03	70	5	88	0.5	764,094	7,662,104
NVO-16226 Stream	Miralga 1.0	0.03	84	5	95	0.5	764,262	7,661,635
NVO-16227 Stream	Miralga 1.0	0.03	70	6	87	0.3	764,234	7,661,276
NVO-16228 Stream	Miralga 1.0	0.03	67	5	77	0.4		7,661,274
NVO-16229 Stream	Miralga 0.5	0.06	55	12	74	0.7	•	7,661,143
NVO-16230 Stream	ŭ	0.03	51	6	67	0.6	•	7,662,250
NVO-16231 Stream	ū	0.03	46	6	67	0.6	•	7,662,439
NVO-16232 Stream	•	0.03	72	6	113	0.5	•	7,662,748
NVO-16233 Stream	•	0.03	60	6	92	0.5	•	7,662,770
NVO-16234 Stream	=	0.03	51	5	76	0.4		7,662,705
NVO-16235 Stream	•	0.03	70	5	80	0.4		7,662,585
NVO-16236 Stream	ŭ	0.03	73	6	71	0.5		7,662,391
NVO-16237 Stream	ŭ	0.03	102	13	101	0.5	•	7,662,052
NVO-16238 Stream	•	0.03	65	10	69	0.5	•	7,662,044
NVO-16240 Stream	Ü	0.03	66	6	85	0.7	•	7,662,795
NVO-16241 Stream	_	0.03	12	4	24	0.4		7,661,905
NVO-16242 Stream	_	0.03	19	4	42	0.5		7,661,801
NVO-16243 Stream	Ü	0.03	32	7	45	0.5	•	7,661,305
NVO-16244 Stream	ŭ	0.03	47	9	63	0.7	•	7,661,227
NVO-16246 Stream	ū	0.03	65	6	68	0.6	•	7,661,315
NVO-16247 Stream	•	0.03	129	4	101	0.3	•	7,661,134
NVO-16248 Stream	=	0.03	122	4	98	0.3		7,661,120
NVO-16249 Stream	-		118	6	72	0.3		7,661,257
NVO-16250 Stream	ŭ	0.03	130	4	98	0.3	•	7,661,247
NVO-16276 Stream	ŭ	0.03	119	6	114	0.3	•	7,661,238
NVO-16277 Stream	ŭ	0.09	67	25	108	0.6	•	7,661,535
NVO-16278 Stream	ŭ	0.05	73	29	128	0.4	•	7,661,516
NVO-16279 Stream	_	0.03	65	7	76	0.4		7,662,980
NVO-16280 Stream	_	0.05	61	7	81			7,662,924
NVO-16281 Stream	Ū	0.06	89	11	91	0.6		7,662,915
NVO-16282 Stream	•	0.03	50	9	129	0.4	•	7,662,891
NVO-16283 Stream	ŭ	0.03	32	7	46	0.5		7,662,816
NVO-16284 Stream	•	0.03	65	8	72	0.5		7,663,809
NVO-16286 Stream	•	0.03	53	7	61	0.6		7,663,813
NVO-16287 Stream	•	0.03	25	9	58	0.7		7,663,530
NVO-16288 Stream	•	0.07	22	15	63	0.8		7,663,533
NVO-16289 Stream	•	0.06	64	11	94	0.4		7,662,227
NVO-16290 Stream	•	0.08	131	9	79	0.6		7,662,463
NVO-16291 Stream	•	0.03	67	20	136	1.0		7,663,986
NVO-16292 Stream	•	0.03	13	7	38	0.5		7,664,405
NVO-16293 Stream	•	0.06	86	26	107	0.6	•	7,664,332
NVO-16294 Stream	•	0.03	40	13	50	0.5		7,664,305
NVO-16296 Stream	•	0.03	58	15	128	0.4		7,664,248
NVO-16297 Stream	•	0.03	42	23	102	0.5		7,663,862
NVO-16298 Stream	•	0.08	91	25	163	0.9		7,663,688
NVO-16299 Stream	=	0.10	102	9	146	0.7		7,663,624
NVO-16354 Stream	•	0.10	102	9 62	77	0.7		7,664,874
NVO-16355 Stream	•	0.13	16	6	37	0.4		7,665,077
NVO-16356 Stream	•	0.03	21	7	48	0.6		7,665,062
NVO-16357 Stream	•	0.03	58	36	40 121	0.0		7,665,521
NVO-16357 Stream	•	1.12	64	128	153	0.8	•	7,665,623
1110-10300 Stream	iviii aiya 12.0	1.12	04	120	100	0.0	100,191	1,000,023

10.12.2025 Seite 8/13

NIVO 10250 Streets Mireles 1.0	0.00	20	40	04	0.0	750 400 7 005 004
NVO-16359 Stream Miralga 1.0	0.03	28	12	81	0.9	758,429 7,665,634
NVO-16360 Stream Miralga 0.5	0.03	15	9	69	0.7	758,417 7,665,636
NVO-16361 Stream Miralga 266.3		52	48	107	8.0	758,237 7,665,789
NVO-16362 Stream Miralga 0.8	0.08	108	14	131	0.6	756,641 7,667,321
NVO-16363 Stream Miralga 1.0	0.15	62	33	136	0.5	756,586 7,667,275
NVO-16364 Stream Miralga 0.5	0.16	89	23	154	0.5	757,129 7,666,582
NVO-16366 Stream Miralga 1.0	0.12	88	17	125	0.6	757,609 7,667,072
NVO-16367 Stream Miralga 0.5	0.15	147	17	131	0.7	757,636 7,667,066
NVO-16368 Stream Miralga 0.5	0.09	142	11	101	0.4	757,815 7,667,122
NVO-16369 Stream Miralga 1.0	0.16	130	18	116	0.6	757,847 7,667,106
NVO-16371 Stream Miralga 1.0	0.16	123	24	123	0.7	758,263 7,666,822
NVO-16372 Stream Miralga 2.0	0.16	132	19	133	0.6	758,265 7,666,831
NVO-16373 Stream Miralga 0.5	0.13	117	14	138	0.7	758,145 7,666,476
NVO-16374 Stream Miralga 2.0	0.06	102	10	118	0.7	758,142 7,666,465
NVO-16375 Stream Miralga 0.5	0.13	94	13	133	0.6	757,852 7,666,683
NVO-16376 Stream Miralga 0.6	0.15	74	18	118	0.6	757,843 7,666,674
NVO-16377 Stream Miralga 0.7	0.08	100	15	112	0.4	759,292 7,666,945
NVO-16378 Stream Miralga 0.6	0.11	114	18	132	0.5	759,329 7,666,908
NVO-16379 Stream Miralga 0.5	0.07	81	21	95	0.4	759,345 7,666,907
NVO-16380 Stream Miralga 1.0	0.11	81	13	107	0.4	759,106 7,666,677
NVO-16381 Stream Miralga 0.8	0.10	195	20	155	0.7	759,090 7,666,700
NVO-16382 Stream Miralga 0.5	0.03	28	7	38	0.6	761,662 7,655,617
NVO-16383 Stream Miralga 2.0	0.03	56	5	70	0.3	762,188 7,655,318
NVO-16384 Stream Miralga 1.0	0.03	67	7	86	0.3	762,173 7,655,332
NVO-16386 Stream Miralga 0.5	0.03	81	6	77	0.4	762,272 7,654,725
NVO-16387 Stream Miralga 1.0	0.03	64	6	82	0.3	761,875 7,654,682
NVO-16388 Stream Miralga 0.5	0.03	54	6	73	0.5	761,909 7,654,734
NVO-16389 Stream Miralga 0.5	0.03	39	6	57	0.5	761,529 7,655,175
NVO-16390 Stream Miralga 0.5	0.03	66	5	73	0.4	761,509 7,655,178
NVO-16391 Stream Miralga 0.5	0.03	46	6	61	0.5	761,519 7,655,247
NVO-16392 Stream Miralga 0.5	0.03	65	5	104	0.5	759,997 7,656,120
NVO-16393 Stream Miralga 0.5	0.06	92	8	128	0.5	759,955 7,655,795
NVO-16394 Stream Miralga 1.0	0.03	77	4	123	0.4	759,924 7,655,782
NVO-16396 Stream Miralga 0.5	0.08	85	7	107	0.5	760,264 7,655,541
NVO-16397 Stream Miralga 0.5	0.03	83	4	123	0.4	760,613 7,655,338
NVO-16398 Stream Miralga 0.5	0.03	95	9	107	0.7	760,612 7,655,366
NVO-16399 Stream Miralga 0.5	0.06	113	6	114	0.5	760,816 7,655,348
NVO-16400 Stream Miralga 0.5	0.06	86	12	98	0.4	761,162 7,655,284
NVO-16511 Stream Miralga 0.5	0.03	60	6	100	0.4	760,648 7,657,239
NVO-16512 Stream Miralga 2.0	0.08	58	8	110	0.4	760,634 7,657,240
NVO-16513 Stream Miralga 0.8	0.05	61	7	99	0.4	760,488 7,657,194
NVO-16514 Stream Miralga 0.5	0.03	36	, 10	66	0.5	760,563 7,656,936
NVO-16515 Stream Miralga 2.0	0.03	70	6	111	0.4	760,689 7,656,784
NVO-16516 Stream Miralga 0.5	0.03	41	5	74	0.4	760,696 7,656,803
14 V O- 105 TO Stream Willarga U.5	0.03	41	5	14	0.4	700,030 7,000,003

Sample ID	Туре	Project		As (ppm)				Mo (ppm)	MGA	Northing MGA 2020 Z50
H9594	Soil	Shady Camp West	1.0	4	60	10	57	0.6	761,199	7,656,279
H9595	Soil	Shady Camp West	1.0	3	47	8	52	0.7	761.239	7.656.279

10.12.2025 Seite 9/13

H9596	Soil	Shady Camp West 1.0	5	31	10	39	0.5	761,279 7,656,278
H9631	Soil	Shady Camp West 0.5	3	164	6	39	0.4	761,479 7,656,279
H9632	Soil	Shady Camp West 2.0	3	109	8	52	0.6	761,519 7,656,279
H9633	Soil	Shady Camp West 0.5	3	79	8	64	0.5	761,559 7,656,279
H9640	Soil	Shady Camp West 5.0	3	32	28	16	0.6	761,799 7,656,278
H9641	Soil	Shady Camp West 12.0	100	83	17	36	3.7	761,838 7,656,278
H9642	Soil	Shady Camp West 4.0	16	94	21	130	0.9	761,879 7,656,279
H9643	Soil	Shady Camp West 1.0	5	39	8	74	0.6	761,920 7,656,279
H9644	Soil	Shady Camp West 1.0	4	50	9	50	8.0	761,960 7,656,278
H9597	Soil	Shady Camp West 1.0	6	73	17	44	0.9	761,320 7,656,279
H9598	Soil	Shady Camp West 2.0	3	52	9	52	0.5	761,359 7,656,278
H9599	Soil	Shady Camp West 2.0	3	59	8	49	0.5	761,399 7,656,278
H9630	Soil	Shady Camp West 1.0	4	100	9	44	0.7	761,439 7,656,279
H9634	Soil	Shady Camp West 0.5	3	54	8	41	0.5	761,599 7,656,279
H9636	Soil	Shady Camp West 26.0	4	250	20	32	0.5	761,648 7,656,278
H9637	Soil	Shady Camp West 13.0	4	107	22	27	0.4	761,679 7,656,278
H9638	Soil	Shady Camp West 7.0	4	71	15	19	1.1	761,720 7,656,279
H9639	Soil	Shady Camp West 11.0	5	105	22	26	1.0	761,759 7,656,278
H9646	Soil	Shady Camp West 2.0	4	67	9	75	0.7	761,999 7,656,278
H9647	Soil	Shady Camp West 0.5	3	40	24	71	0.5	762,040 7,656,279
H9648	Soil	Shady Camp West 5.0	5	61	51	112	8.0	762,079 7,656,279

Visual wire gold observations (Bamboo)

(All sample locations are GPS located on MGA_2020 zone 50.)

Visual Description Mineral Sample ID Type estimate mineral size Easting Northing Project observed (%) (mm) N/A Detected Bamboo Native Gold N/A Wire gold 220,735 7,673,280

Appendix 2 - JORC Code, 2012 Edition - Table 1

Section 1: Sampling Techniques and Data

(Criteria listed in the preceding section also apply to this section.)

Criteria JORC Code explanation

• Nature and quality of sampling (e.g., cut channels, random of

 Include reference to measures taken to ensure sample representations. Sampling techniques Aspects of the determination of mineralisation that are Mate

• In cases where 'industry standard' work has been done this

Drilling techniques • Drill type (e.g., core, reverse circulation, open-hole hammer,

Method of recording and assessing core and chip sample re

Measures taken to maximise sample recovery and ensure re

Whether a relationship exists between sample recovery and

Drill sample recovery

10.12.2025 Seite 10/13

Logging	 Whether core and chip samples have been geologically and Whether logging is qualitative or quantitative in nature. Core The total length and percentage of the relevant intersections 						
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all If non-core, whether riffled, tube sampled, rotary split, etc ar For all sample types, the nature, quality, and appropriatenes Quality control procedures adopted for all sub-sampling stag Measures taken to ensure that the sampling is representativ Whether sample sizes are appropriate to the grain size of th 						
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and For geophysical tools, spectrometers, handheld XRF instrun Nature of quality control procedures adopted (e.g., standard 						
Verification of sampling and assaying	 The verification of significant intersections by either indepen The use of twinned holes. Documentation of primary data, data entry procedures, data Discuss any adjustment to assay data. 						
Location of data points	 Accuracy and quality of surveys used to locate drill holes (co Specification of the grid system used. Quality and adequacy of topographic control. 						
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to es Whether sample compositing has been applied. 						
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sam If the relationship between the drilling orientation and the ori 						
Sample security	The measures taken to ensure sample security.						
Audits or reviews	The results of any audits or reviews of sampling techniques						
Section 2: Reporting of Exploration Results							
(Criteria listed in the preceding section also apply to this section.)							
Criteria	JORC Code explanation						
Mineral tenement and land tenure status	 Type, reference name/number, location and ov The security of the tenure held at the time of re 						

10.12.2025 Seite 11/13

Exploration done by other parties	 Acknowledgment and appraisal of exploration l
Geology	● Deposit type, geological setting, and style of m
Drill hole Information	 A summary of all information material to the un If the exclusion of this information is justified or
Data aggregation methods	 In reporting Exploration Results, weighting ave Where aggregate intercepts incorporate short I The assumptions used for any reporting of met
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in If the geometry of the mineralisation with respe If it is not known and only the down hole length
Diagrams	Appropriate maps and sections (with scales) are
Balanced reporting	Where comprehensive reporting of all Exploration
Other substantive exploration data	Other exploration data, if meaningful and mate.
Further work	 The nature and scale of planned further work (Diagrams clearly highlighting the areas of poss

No Section 3 or 4 report as no Mineral Resources or Ore Reserves are reported in this Appendix

Photos and charts accompanying this announcement are available at

https://www.globenewswire.com/NewsRoom/AttachmentNg/dbf1b3bd-d23b-4ccd-9371-f3501998b247

https://www.globenewswire.com/NewsRoom/AttachmentNg/f5e41ab5-3c97-4968-86fc-93eb00049295

https://www.globenewswire.com/NewsRoom/AttachmentNg/58cc4f17-ca65-41dc-ac96-3a0a5251a446

https://www.globenewswire.com/NewsRoom/AttachmentNg/4af41664-e366-4578-8ad0-e3046cab57cc

https://www.globenewswire.com/NewsRoom/AttachmentNg/7b749f5f-4539-4f30-b3dd-8f1edd89af8c

https://www.globenewswire.com/NewsRoom/AttachmentNg/961c5e62-1ce7-479e-9f7f-acb36055972d

https://www.globenewswire.com/NewsRoom/AttachmentNg/a700a0ec-8e9e-41e2-a34f-be25b4bd3786

https://www.globenewswire.com/NewsRoom/AttachmentNg/a700a0ec-8e9e-41e2-a34f-be25b4bd3786

10.12.2025 Seite 12/13

https://www.globenewswire.com/NewsRoom/AttachmentNg/fc64e1a4-5575-4a39-9b44-f33774aa174d

Dieser Artikel stammt von GoldSeiten.de
Die URL für diesen Artikel lautet:

https://www.goldseiten.de/artikel/628532--Exploration-to-Expand-Into-the-East-Pilbara.html

Für den Inhalt des Beitrages ist allein der Autor verantwortlich bzw. die aufgeführte Quelle. Bild- oder Filmrechte liegen beim Autor/Quelle bzw. bei der vom ihm benannten Quelle. Bei Übersetzungen können Fehler nicht ausgeschlossen werden. Der vertretene Standpunkt eines Autors spiegelt generell nicht die Meinung des Webseiten-Betreibers wieder. Mittels der Veröffentlichung will dieser lediglich ein pluralistisches Meinungsbild darstellen. Direkte oder indirekte Aussagen in einem Beitrag stellen keinerlei Aufforderung zum Kauf-/Verkauf von Wertpapieren dar. Wir wehren uns gegen jede Form von Hass, Diskriminierung und Verletzung der Menschenwürde. Beachten Sie bitte auch unsere <u>AGB/Disclaimer!</u>

Die Reproduktion, Modifikation oder Verwendung der Inhalte ganz oder teilweise ohne schriftliche Genehmigung ist untersagt! Alle Angaben ohne Gewähr! Copyright © by GoldSeiten.de 1999-2025. Es gelten unsere <u>AGB</u> und <u>Datenschutzrichtlinen</u>.

10.12.2025 Seite 13/13