Promising Surface Exploration Informs Tibooburra RC Drilling Program

01.04.2025 | GlobeNewswire

HIGHLIGHTS

- Recent exploration by Novo at the Clone prospect included detailed structural, lithological and regolith mapping, pXRF and < 80# mesh soil sampling, and rock chip sampling.
- Novo rock chip sampling returned peak results of 89.6 g/t Au and 41.9 g/t Au from mullock dump samples associated with historical workings, and 31.4 g/t Au and 10.4 g/t Au from quartz vein outcrop over 700 m of strike, supporting previous high grade drill results.
- Soil sampling defined a ~ 600 m long and up to 250 m wide coherent anomaly > 30 ppb Au, with peak results of 1,585 ppb Au and 1,440 ppb Au.
- Mapping defined a west dipping thrust (Clone Thrust) associated with high grade gold mineralisation and significant sericite-carbonate alteration.
- A~2,000 m targeted RC drill program is planned to commence in April 2025 to test this high-grade gold mineralised trend.
- RC drilling at Clone completed by Manhattan Corporation Limited (ASX: MHC) in 2023, highlighted
 potential for shallow dipping high-grade gold mineralisation, with excellent drill results returned from 11
 holes including¹:
 - 7 m at 7.23 g/t Au from 81 m, including 3 m at 16.1 g/t Au (CL0007)
 - 9 m at 6.03 g/t Au from 16 m (CL0010)
 - 6 m at 4.22 g/t Au from 66 m, including 2 m at 11.65 g/t Au (CL0004)
 - 31 m at 1.29 g/t Au from 60 m, including 3 m at 6.52 g/t Au (CL0002)
- The Manhattan RC program tested some 250 m strike of an interpreted trend > 700 m to a maximum depth below surface of 75 m.
- The Clone prospect is underexplored with mineralisation open in all directions and trending under cover to the south.
- The southern cover sediments extend for up to 15 km over the prospective target basement corridor and provide opportunities to explore for potential 'blind discoveries'.

Mike Spreadborough, Executive Co-Chairman and Acting Chief Executive Officer, said: "We look forward to commencing our RC drill program at the Clone prospect, which forms part of our Tibooburra Gold Project, located in northwestern NSW.

"Tibooburra is a standout exploration opportunity due to previous high-grade drilling results and compelling exploration upside. We aim to start drilling this month and the program we have developed will test several priority gold targets which were identified through our recently completed three-week reconnaissance program. The remainder of 2025 is set to be a busy year exploration-wise for Novo and we are focused on executing on our strategy and delivering significant value to our shareholders."

PERTH, Australia, April 01, 2025 -- <u>Novo Resources Corp.</u> (Novo or the Company) (ASX: NVO) (TSX: NVO) (OTCQB: NSRPF) is pleased to announce that an RC program at the Tibooburra Gold Project (Tibooburra) (*Figure 1*), located in northwestern NSW is planned to commence in April 2025. The drill program will focus on the Clone prospect (*Figures 2 and 3*) over a strike of several hundred metres and is designed to test high-grade gold targets recently confirmed during a successful three-week field campaign of mapping and surface sampling.

Figure 1: Location of the Tibooburra Gold Project, in northwestern NSW.

18.12.2025 Seite 1/13

Figure 2: Drone footage of mapping activities at the Clone prospect

Figure 3: Tibooburra project tenure, with regional geology, drill collars, main prospects, highlighting multiple parallel mineralised trends.

Tibooburra is an advanced exploration opportunity which covers much of the historic Albert Goldfield (*Figure 1*). Tenure includes six granted exploration licences over 630 sq km.

The agreement with Manhattan Corporation Limited (ASX: MHC) (Manhattan)² grants Novo an option to acquire a 70% interest in the tenements comprising this tenure, subject to (among other things) Novo meeting two minimum expenditure requirements over two 12 month periods. Refer to Novo's 13 December 2024 news release titled "Novo strengthens portfolio with two High-Grade gold projects in NSW, Australia" for the detailed terms of the agreement with Manhattan.

Geological mapping and surface sampling of the Clone trend defined several targets that warrant drill testing or further surface geochemical sampling and review. Results from minus 80# mesh soil sampling confirmed Au anomalism associated with the Clone Thrust and splay structures, with rock chip sampling confirming high-grade gold mineralisation within the main zone of workings.

An initial Novo RC drill program of ~ 2,000 m is planned to commence in April 2025 and will target the main zone of historical workings at Clone over ~700 m of strike.

Overview

The Albert Goldfields lies on a unique district-scale bend at the boundary of the Thomson and Delamarian orogens, with stratigraphy wrapping around the Tibooburra granite intrusive complex to the northeast.

Over 200 historic workings on multiple lines, delineating over 34 km of interpreted mineralised trends have been identified at Tibooburra. Several targets were highlighted by Manhattan including New Bendigo, Clone, Pioneer, Elizabeth Reef and Good Friday (*Figure 3*). However, outside of the New Bendigo prospect, little systematic modern exploration has been conducted. The area is significantly under-explored, and satellite imagery and interpretation show untested cover sequences, particularly in the south. At Clone, extensive historical workings manifest over ~450 m strike and 20 m to 40 m in depth.

RC drilling by Manhattan in 2023 highlighted potential for shallow dipping high-grade gold mineralisation. Excellent drill results were returned in fresh rock from an initial 11-hole RC drill program testing 250 m strike to a maximum depth below surface of 75 m, including²:

- 7 m at 7.23 g/t Au from 81 m, including 3 m at 16.1 g/t Au (CL0007)
- 9 m at 6.03 g/t Au from 16 m (CL0010)
- 6 m at 4.22 g/t Au from 66 m, including 2 m at 11.65 g/t Au (CL0004)
- 31 m at 1.29 g/t Au from 60 m, including 3 m at 6.52 g/t Au (CL0002)

This mineralisation remains open in all directions, with targeted mineralised basement trending under cover sediments to the south. The cover sediments extend for some 15 km providing opportunities for exploration targeting potential 'blind discoveries'.

Novo has not conducted data verification (as that term is defined in National Instrument 43-101 Standards of Disclosure for Mineral Projects and JORC 2012) in respect of the above data from New Bendigo and Clone and therefore is not to be regarded as reporting, adopting or endorsing those results/figures. No assurance can be given that Novo will achieve similar results.

Recent Soil and Rock Chip Sample Results

18.12.2025 Seite 2/13

A three-week field campaign comprising geochemical surface sampling and detailed mapping of the main ~ 3 km strike at the Clone prospect was completed in February 2025, with all assay results returned. The field programs were devised to investigate controls on gold mineralisation and allowed Novo to design a follow up RC drilling program to validate previous drill results. Novo is anticipating that this program may significantly extend known mineralisation along strike, down dip and down-plunge.

Results from all aspects of the exploration work proved extremely promising, supporting the decision to commit to ~2,000 m of RC drilling at Clone in April 2025.

Mapping identified a package of folded and sheared deep marine meta-sediments ranging from siltstone (shale and slate) to phyllite with limited variation in grain size. Metamorphism of the host rocks is greenschist facies. Structure in the mapping area is dominated by complex folding (possibly multi-phase) including interpreted isoclinal folding in the immediate Clone area, overprinted by a strong NW trending regional foliation.

Mineralised late-stage NNW to NW trending moderately southwest dipping shears (interpreted as reverse faults) have been the focus for much of the historical workings. Generally, the best mineralisation occurs where these structures bend in a more northerly direction (*Figure 4*), producing 1 m to 10 m wide shear zones. The main shear, the Clone Thrust, is traceable over 3 km strike and trends under cover to the NW and SE. Several splay structures are also present and are potentially part of the fertile architecture of the belt (*Figure 4 and Figure 5*). NNE trending cross-cutting faults are common, with interpreted sinistral movement on the main shear zones. Mineralised veining includes west dipping late-stage quartz veins which vary between laminated, massive, brecciated and sheared, and contain rare sulphide and green sericite.

Figure 4: Structural mapping and thematically mapped minus 80# mesh soil samples over the ~ 3 km Clone Trend

Alteration, especially in these mineralised shears, is dominated by intense sericite and minor sulphides (pyrite and arsenopyrite). Green sericite is present on quartz vein selvedges in almost all historic workings. A broad strong zone of alteration is present between the Clone Thrust and the Western Splay adjacent to the main Clone target.

Conventional minus 80# mesh soil sampling on a nominal grid of 20 m x 40 m over areas of historical workings, extending to 20 m x 80 m to the north and south, has defined a 600 m long coherent > 30 ppb Au anomaly with peak results of 1,585 ppb Au and 1,440 ppb Au over the main target area. See Appendix 1 for significant soil sample results.

Rock chip sampling (*Figure 5 and Figure 6*) yielded peak results of 89.6 g/t Au and 41.9 g/t Au from mullock dump samples at the northern end of the main Clone workings. The samples comprised sheared phyllite with multiple centimetre scale quartz veinlets and minor boxwork after sulphides. In the southern part of the main workings, peak results include 31.4 g/t Au and 10.4 g/t Au from within the west dipping Clone Thrust (*Figure 7*). Several samples collected in the main area graded > 3 g/t Au. See Appendix 2 for all rock sample results.

Figure 5: Soil sampling anomaly and rock chip sampling across the main Clone Prospect

High-grade gold assay results may highlight the potential for a coarse component of gold in the mineralised system at Clone, leading to difficulties in obtaining accurate rock chip results. A program of 20-30 samples grading > 0.1 g/t Au will be re-assayed via screen-fire assay to assess the coarse gold deportment and better inform assays of drill samples.

18.12.2025 Seite 3/13

Figure 6: Detailed map showing Manhattan RC drill collars, in addition to results from recent Novo rock chip and mullock dump sampling at Clone; results may not be indicative of mineralisation in the district

Figure 7: Rock chip sample results from an exposure of the west dipping Clone Thrust, highlighting a significant high-grade zone of mineralisation over approx. 8 m width with a peak result of 31.4 g/t Au from the western-most quartz vein; results may not be indicative of mineralisation in the district

Planned RC Drill Program

Geological mapping and surface sampling of the Clone trend defined several targets that warrant drill testing or further surface geochemical sampling and review.

Results from minus 80# mesh soil sampling confirmed Au anomalism associated with the Clone Thrust and splay structures, with rock chip sampling confirming high-grade gold mineralisation within the main zone of workings.

The initial RC drill program of ~ 2,000 m is planned to commence in April 2025 and will target the main zone of historical workings at Clone over ~700 m of strike.

A heritage survey has been completed by the Tibooburra Local Aboriginal Land Council (TLALC), with no heritage sites located on the drill pads or the field track required to access the northern drill holes. An APO for all proposed drillholes and the northern access track was successfully returned in March.

Authorised for release by the Board of Directors.

CONTACT

Investors: North American Queries: Media:

 Mike Spreadborough
 Leo Karabelas
 Cameron Gilenko

 +61 8 6400 6100
 +1 416 543 3120
 +61 466 984 953

info@novoresources.com leo@novoresources.com cameron.gilenko@sodali.com

QP STATEMENT

Mrs. Karen (Kas) De Luca (MAIG), is the qualified person, as defined under National Instrument 43-101 *Standards of Disclosure for Mineral Projects*, responsible for, and having reviewed and approved, the technical information contained in this news release. Mrs De Luca is Novo's General Manager Exploration.

JORC COMPLIANCE STATEMENT

The information in this news release that relates to previously reported Exploration Results from Novo's NSW Gold Portfolio is extracted from Novo's ASX announcement entitled Novo Strengthens Portfolio with Two High-Grade Gold Projects in NSW, Australia released to ASX on 13 December 2024 which is available to view at www.asx.com.au. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the competent persons findings are presented have not been materially modified from the original market announcement.

The information in this news release that relates to the previously reported exploration target at Belltopper is

18.12.2025 Seite 4/13

extracted from Novo's ASX announcement entitled Belltopper Mineralisation Modelling Defines Prospectivity released to ASX on 25 September 2024 which is available to view at www.asx.com.au. The Company confirms that it is not aware of any new information or data that materially affects the information in the original market announcement and that the form and context in which the Competent Person's findings are presented has not been materially modified from the original market announcement.

FORWARD-LOOKING STATEMENTS

Some statements in this news release may contain "forward-looking statements" within the meaning of Canadian and Australian securities law and regulations. In this news release, such statements include but are not limited to planned exploration activities and the timing of such. These statements address future events and conditions and, as such, involve known and unknown risks, uncertainties and other factors which may cause the actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the statements. Such factors include, without limitation, customary risks of the resource industry and the risk factors identified in Novo's annual information form for the year ended December 31, 2024 (which is available under Novo's profile on SEDAR+ at www.sedarplus.ca and at www.asx.com.au) and in the Company's prospectus dated 2 August 2023 which is available at www.asx.com.au. Forward-looking statements speak only as of the date those statements are made. Except as required by applicable law, Novo assumes no obligation to update or to publicly announce the results of any change to any forward-looking statement contained or incorporated by reference herein to reflect actual results, future events or developments, changes in assumptions or changes in other factors affecting the forward-looking statements. If Novo updates any forward-looking statement(s), no inference should be drawn that the Company will make additional updates with respect to those or other forward-looking statements.

1 Refer to ASX news release by Manhattan Corp dated 10/07/2023 - New High-Grade Gold Discovery 2 Refer to ASX news release by Novo Resources dated 13/12/2024 - Novo Strengthens Portfolio with Two High-Grade Gold Projects in NSW, Australia.

ABOUT NOVO

Novo is an Australian based gold explorer listed on the ASX and the TSX focussed on discovering standalone gold projects with > 1 Moz development potential. Novo is an innovative gold explorer with a significant land package covering approximately 5,500 square kilometres in the Pilbara region of Western Australia, along with the 22 square kilometre Belltopper project in the Bendigo Tectonic Zone of Victoria, Australia.

Novo's key project area in the Pilbara is the Egina Gold Camp, where De Grey Mining is farming-in to form a JV at the Becher Project and surrounding tenements through exploration expenditure of A\$25 million within 4 years for a 50% interest. The Becher Project has similar geological characteristics as De Grey's 12.7 Moz Hemi Project*. Novo is also advancing gold exploration south of Becher in the Egina Gold Camp, part of the Croydon JV (Novo 70%: Creasy Group 30%). Novo continues to undertake early-stage exploration elsewhere across its Pilbara tenement portfolio.

Novo has also formed a lithium joint venture with SQM in the Pilbara which provides shareholder exposure to battery metals.

Novo has recently strengthened its high-quality, Australian based exploration portfolio by adding the TechGen John Bull Gold Project in the New England Orogen of NSW, and Manhattan Tibooburra Gold Project in the Albert Goldfields in northwestern NSW. Both projects demonstrate prospectivity for significant discovery and resource definition and align with Novo's strategy of identifying and exploring projects with > 1 Moz Au potential. These high-grade gold projects compliment the landholding consolidation that forms the Toolunga Project in the Onslow District in Western Australia.

Novo has a significant investment portfolio and a disciplined program in place to identify value accretive opportunities that will build further value for shareholders.

18.12.2025 Seite 5/13

Please refer to Novo's website for further information including the latest corporate presentation.

*An Exploration Target as defined in the JORC Code (2012) is a statement or estimate of the exploration potential of a mineral deposit in a defined geological setting where the statement or estimate, quoted as a range of tonnes and a range of grade (or quality), relates to mineralisation for which there has been insufficient exploration to estimate a Mineral Resource. Accordingly, these figures are not Mineral Resource or Ore Reserve estimates as defined in the JORC Code (2012). The potential quantities and grades referred to above are conceptual in nature and there has been insufficient exploration to estimate a Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource. These figures are based on the interpreted continuity of mineralisation and projection into unexplored ground often around historical workings. The Exploration Target has been prepared in accordance with the JORC Code (2012), as detailed in the Company's ASX announcement released on 25 September 2024 (available to view at www.asx.com.au). The Tonnage range for the exploration target is 1.5Mt to 2.1Mt, the Grade range is 6.6g/t Au to 8.4g/t Au and the Ounces range from 320koz Au to 570 koz Au. The Company confirms that it is not aware of any new information that materially affects the information included in the original market announcement and that all material assumptions and technical parameters underpinning the estimates in the original market announcement continue to apply and have not materially changed. Dr Christopher Doyle (MAIG) and Dr Simon Dominy (FAusIMM CPGeo; FAIG RPGeo), are the qualified persons, as defined under National Instrument 43-101 *Standards of Disclosure for Mineral Projects*, responsible for, and having reviewed and approved, the technical information relating to the Exploration Target. Dr Doyle is Novo's Exploration Manager - Victoria and Dr Dominy is a Technical Advisor to Novo.

#Refer to De Grey's ASX Announcement, Hemi Gold Project mineral Resource Estimate (MRE) 2024, dated 14 November 2024. No assurance can be given that a similar (or any) commercially viable mineral deposit will be determined at Novo's Pilbara Projects.

Appendix 1 -Table of Soil Sample Results, GDA94 z54

Appendix	i - lable of Sol	Jani	pie itesuits,	ODA34 234		
Sample ID	Sample Type	Year	Easting (m)	Northing (m)	Height (m)	Au (ppb)
K00003	Soil	2025	584,379	6,725,360	191	20
K00005	Soil	2025	584,419	6,725,360	185	117
K00006	Soil	2025	584,440	6,725,359	185	291
K00007	Soil	2025	584,460	6,725,360	184	22
K00012	Soil	2025	584,559	6,725,359	189	15
K00023	Soil	2025	584,500	6,725,400	192	18
K00026	Soil	2025	584,441	6,725,399	192	29
K00027	Soil	2025	584,418	6,725,398	192	299
K00028	Soil	2025	584,401	6,725,400	190	38
K00029	Soil	2025	584,380	6,725,400	190	30
K00030	Soil	2025	584,359	6,725,400	189	16
K00031	Soil	2025	584,339	6,725,400	188	24
K00033	Soil	2025	584,400	6,725,480	190	23
K00034	Soil	2025	584,378	6,725,481	189	39
K00036	Soil	2025	584,360	6,725,479	188	31
K00037	Soil	2025	584,340	6,725,480	189	226
K00038	Soil	2025	584,320	6,725,480	188	40
K00039	Soil	2025	584,300	6,725,479	187	72
K00040	Soil	2025	584,279	6,725,479	187	21
K00041	Soil	2025	584,260	6,725,480	187	19
K00042	Soil	2025	584,238	6,725,479	187	21
K00046	Soil	2025	584,200	6,725,439	185	16
K00052	Soil	2025	584,320	6,725,439	190	137
K00053	Soil	2025	584,340	6,725,440	191	22
K00054	Soil	2025	584,361	6,725,439	190	24

18.12.2025 Seite 6/13

K00055	Soil	2025 584,381	6,725,440	191	31
K00056	Soil	2025 584,401	6,725,440	192	154
K00057	Soil	2025 584,420	6,725,439	194	29
K00057	Soil	2025 584,441	6,725,440	195	32
K00075	Soil	2025 584,417	6,725,479	192	101
K00075	Soil	2025 584,440	6,725,519	191	178
K00070	Soil	2025 584,420	6,725,520	186	1,585
K00077	Soil	2025 584,406	6,725,520	185	848
		•			
K00079	Soil	2025 584,380	6,725,520	183	80
K00083	Soil	2025 584,240	6,725,520	179	19
K00084	Soil	2025 584,220	6,725,520	178	36
K00089	Soil	2025 584,321	6,725,560	177	15
K00090	Soil	2025 584,340	6,725,559	179	50
K00091	Soil	2025 584,360	6,725,558	180	286
K00093	Soil	2025 584,460	6,725,559	183	16
K00094	Soil	2025 584,480	6,725,559	183	35
K00102	Soil	2025 584,460	6,725,519	185	18
K00103	Soil	2025 584,301	6,725,640	185	112
K00104	Soil	2025 584,320	6,725,639	185	254
K00105	Soil	2025 584,341	6,725,640	186	188
K00106	Soil	2025 584,360	6,725,640	185	43
K00108	Soil	2025 584,400	6,725,639	187	16
K00113	Soil	2025 584,500	6,725,599	189	20
K00122	Soil	2025 584,361	6,725,600	187	40
K00123	Soil	2025 584,336	6,725,599	185	64
K00124	Soil	2025 584,321	6,725,600	190	21
K00125	Soil	2025 584,300	6,725,600	190	18
K00126	Soil	2025 584,280	6,725,599	189	62
K00127	Soil	2025 584,260	6,725,599	189	492
K00128	Soil	2025 584,240	6,725,600	188	38
K00129	Soil	2025 584,220	6,725,599	187	36
K00130	Soil	2025 584,220	6,725,639	187	15
K00131	Soil	2025 584,239	6,725,640	189	18
K00132	Soil	2025 584,260	6,725,640	191	29
K00133	Soil	2025 584,281	6,725,640	190	25
K00136	Soil	2025 584,439	6,725,680	197	31
K00138	Soil	2025 584,401	6,725,680	195	19
K00140	Soil	2025 584,361	6,725,680	192	18
K00141	Soil	2025 584,340	6,725,680	192	47
K00142	Soil	2025 584,319	6,725,677	192	1,440
K00143	Soil	2025 584,300	6,725,680	192	45
K00144	Soil	2025 584,276	6,725,679	191	20
K00149	Soil	2025 584,203	6,725,676	187	30
K00152	Soil	2025 584,160	6,725,759	184	17
K00153	Soil	2025 584,180	6,725,761	183	16
K00154	Soil	2025 584,240	6,725,759	182	21
K00155	Soil	2025 584,260	6,725,760	183	47
K00163	Soil	2025 584,420	6,725,760	186	29
K00168	Soil	2025 584,321	6,725,840	187	15
K00172	Soil	2025 584,220	6,725,840	185	23
K00176	Soil	2025 584,140	6,725,839	185	18
K00190	Soil	2025 584,221	6,725,920	187	51
		 	-,, 		

18.12.2025 Seite 7/13

K00223	Soil	2025 584,040	6,726,239	189	20
K00224	Soil	2025 584,060	6,726,240	189	21
K00239	Soil	2025 583,920	6,726,399	191	20
K00241	Soil	2025 583,880	6,726,399	191	25
K00253	Soil	2025 583,900	6,726,559	201	15
K00257	Soil	2025 583,820	6,726,559	205	15
K00258	Soil	2025 583,801	6,726,559	207	51
K00263	Soil	2025 583,701	6,726,560	198	23
K00268	Soil	2025 583,620	6,726,560	197	20
K00269	Soil	2025 583,600	6,726,560	196	24
K00274	Soil	2025 583,521	6,726,559	195	16
K00291	Soil	2025 584,361	6,725,880	189	19
K00306	Soil	2025 584,277	6,725,721	187	17
K00309	Soil	2025 584,340	6,725,720	186	16
K00322	Soil	2025 584,301	6,725,800	182	42
K00324	Soil	2025 584,200	6,725,800	183	22
K00333	Soil	2025 584,119	6,725,880	187	17
K00334	Soil	2025 584,141	6,725,880	186	21
K00338	Soil	2025 584,199	6,725,880	188	18
K00340	Soil	2025 584,239	6,725,880	188	20
K00354	Soil	2025 584,201	6,726,000	197	16
K00360	Soil	2025 583,900	6,726,160	183	15
K00451	Soil	2025 584,402	6,725,319	177	21
K00454	Soil	2025 584,461	6,725,320	179	75
K00455	Soil	2025 584,481	6,725,318	178	28
K00456	Soil	2025 584,500	6,725,320	181	21
K00479	Soil	2025 584,541	6,725,280	181	16
K00482	Soil	2025 584,482	6,725,280	177	19
K00499	Soil	2025 584,481	6,725,240	178	19
K00504	Soil	2025 584,460	6,725,719	190	55
K00506	Soil	2025 584,500	6,725,680	189	15
K00511	Soil	2025 584,520	6,725,599	182	18
K00512	Soil	2025 584,540	6,725,599	183	64
K00514	Soil	2025 584,579	6,725,560	186	17
K00528	Soil	2025 584,660	6,725,400	192	27
K00529	Soil	2025 584,640	6,725,400	193	31
K00539	Soil	2025 584,441	6,725,199	181	20
K00540	Soil	2025 584,461	6,725,200	181	15
K00550	Soil	2025 584,640	6,725,200	191	61
K00551	Soil	2025 584,660	6,725,200	190	16
K00567	Soil	2025 584,660	6,725,040	193	20
K00578	Soil	2025 584,860	6,725,039	190	32
K00601	Soil	2025 584,521	6,725,241	186	27
K00602	Soil	2025 584,541	6,725,240	188	15
K00611	Soil	2025 584,721	6,725,239	193	18
K00613	Soil	2025 584,425	6,725,160	186	22
K00614	Soil	2025 584,440	6,725,160	186	18
K00617	Soil	2025 584,660	6,725,161	187	26
K00658	Soil	2025 584,600	6,725,081	185	16
K00662	Soil	2025 584,680	6,725,080	185	32
K00663	Soil	2025 584,700	6,725,080	183	19
K00697	Soil	2025 583,520	6,726,720	197	16
1100001	5011	2020 000,020	0,720,720	101	10

18.12.2025 Seite 8/13

K00708	Soil	2025 584,681	6,724,959	178	21
K00744	Soil	2025 584,701	6,724,802	178	26
K00762	Soil	2025 583,480	6,726,641	191	15
K00768	Soil	2025 583,580	6,726,640	192	24
K00772	Soil	2025 583,641	6,726,640	194	21
K00773	Soil	2025 583,661	6,726,640	196	18
K00800	Soil	2025 583,701	6,726,800	206	16
K00814	Soil	2025 583,599	6,726,960	189	19
K00846	Soil	2025 583,540	6,726,680	199	16
K00875	Soil	2025 583,740	6,726,881	201	15
K00888	Soil	2025 583,501	6,726,880	197	18
K00891	Soil	2025 583,442	6,726,880	193	48
K00896	Soil	2025 583,360	6,726,880	191	37
K00905	Soil	2025 583,620	6,726,600	204	22
K00953	Soil	2025 583,660	6,726,800	207	18
K00993	Soil	2025 583,440	6,726,840	193	18
K00994	Soil	2025 583,460	6,726,840	193	132

Appendix 2 -Table of Rock Sample Results, GDA94 z54

Sample ID	Sample Type	Year	Easting (m)	Northing (m)	Height (m)	Au g/t
R08501	Rock Chip	2025	584,630	6,725,239	188	0.01
R08502	Rock Chip	2025	584,207	6,725,875	185	0.01
R08503	Rock Chip	2025	584,136	6,726,016	186	<0.01
R08504	Rock Chip	2025	584,147	6,726,032	186	<0.01
R08505	Rock Chip	2025	583,959	6,726,024	182	<0.01
R08506	Rock Chip	2025	583,993	6,726,086	183	0.01
R08507	Rock Chip	2025	583,769	6,726,607	198	<0.01
R08508	Rock Chip	2025	583,701	6,726,775	192	<0.01
R08509	Mullock Grab	2025	583,636	6,726,526	193	0.01
R08510	Rock Chip	2025	583,637	6,726,527	192	0.03
R08512	Rock Chip	2025	583,652	6,726,499	193	0.01
R08513	Rock Chip	2025	583,645	6,726,507	192	0.01
R08514	Rock Chip	2025	583,538	6,726,696	192	<0.01
R08516	Rock Chip	2025	583,471	6,726,830	190	0.08
R08517	Rock Chip	2025	583,412	6,726,966	187	0.02
R08518	Rock Chip	2025	584,942	6,726,444	203	<0.01
R08519	Rock Chip	2025	584,886	6,726,665	210	0.01
R08520	Rock Chip	2025	584,269	6,725,573	183	0.04
R08521	Rock Chip	2025	584,271	6,725,573	182	0.02
R08522	Rock Chip	2025	584,274	6,725,576	183	0.02
R08523	Rock Chip	2025	584,254	6,725,619	182	0.01
R08524	Mullock Grab	2025	584,297	6,725,573	185	0.01
R08525	Rock Chip	2025	584,299	6,725,575	184	0.03
R08527	Mullock Grab	2025	584,285	6,725,724	185	0.02
R08528	Rock Chip	2025	584,292	6,725,735	183	0.01
R08529	Rock Chip	2025	584,284	6,725,730	183	0.01
R08530	Rock Chip	2025	584,286	6,725,731	183	0.03
R08531	Mullock Grab	2025	584,309	6,725,703	183	89.6
R08532	Mullock Grab	2025	584,313	6,725,690	184	41.9
R08533	Mullock Grab	2025	584,327	6,725,670	184	1.03

18.12.2025 Seite 9/13

R08534	Mullock Grab	2025 584,330	6,725,669	184	1.7
R08536	Rock Chip	2025 584,345	6,725,654	184	7.72
R08537	Rock Chip	2025 584,351	6,725,649	183	4.01
R08538	Rock Chip	2025 584,356	6,725,603	187	3.88
R08539	Mullock Grab	2025 584,370	6,725,586	187	2.38
R08540	Rock Chip	2025 584,366	6,725,588	185	1.84
R08541	Rock Chip	2025 584,364	6,725,588	185	1.5
R08542	Rock Chip	2025 584,361	6,725,588	186	0.84
R08543	Rock Chip	2025 584,362	6,725,586	186	0.15
R08544	Rock Chip	2025 584,376	6,725,568	184	4.79
R08545	Rock Chip	2025 584,376	6,725,568	184	0.24
R08546	Rock Chip	2025 584,375	6,725,569	184	2.5
R08547	Rock Chip	2025 584,375	6,725,569	184	0.14
R08548	Rock Chip	2025 584,375	6,725,569	184	0.45
R08549	Rock Chip	2025 584,373	6,725,569	184	31.4
R08551	Rock Chip	2025 584,377	6,725,568	183	0.48
R08552	Rock Chip	2025 584,370	6,725,575	183	0.33
R08553	Rock Chip	2025 584,369	6,725,575	183	10.4
R08554	Rock Chip	2025 584,368	6,725,574	183	0.3
R08555	Rock Chip	2025 584,368	6,725,573	183	0.57
R08556	Mullock Grab	2025 584,468	6,725,586	186	0.08
R08557	Rock Chip	2025 584,476	6,725,589	187	0.04
R08558	Rock Chip	2025 584,473	6,725,587	187	0.03
R08559	Rock Chip	2025 584,401	6,725,519	188	4.91
R08561	Rock Chip	2025 584,400	6,725,518	188	0.44
R08562	Rock Chip	2025 584,400	6,725,518	188	2.32
R08563	Rock Chip	2025 584,407	6,725,506	198	0.09
R08564	Rock Chip	2025 584,399	6,725,518	188	0.12
R08565	Rock Chip	2025 584,490	6,725,541	199	0.02
R08566	Mullock Grab	2025 584,432	6,725,455	199	0.03
R08567	Rock Chip	2025 584,652	6,725,152	202	0.01
R08568	Rock Chip	2025 584,654	6,725,147	200	0.02
R08569	Rock Chip	2025 584,663	6,725,136	201	0.01
R08570	Rock Chip	2025 584,673	6,725,111	199	<0.01
R08571	Rock Chip	2025 584,439	6,725,717	194	0.01
R08572	Rock Chip	2025 584,477	6,725,594	187	0.02
R08573	Rock Chip	2025 584,277	6,725,409	182	0.02
R08574	Rock Chip	2025 584,347	6,725,438	185	<0.01
R08575		2025 584,416		186	0.19
R08576	Mullock Grab	2025 584,474	6,725,305	185	0.23
R08577	Rock Chip	2025 584,508	6,725,474	192	<0.01
R08578	Rock Chip	2025 584,230	6,725,586	188	<0.01
R08579	Rock Chip	2025 584,755		190	<0.01
R08580	Rock Chip	2025 584,728		189	<0.01
R08601	Rock Chip	2025 585,409		190	<0.01
R08602	Rock Chip	2025 585,433	6,724,539	171	<0.01

JORC Code, 2012 Edition - Table 1

Section 1: Sampling Techniques and Data

18.12.2025 Seite 10/13

(Criteria listed in the preceding section also apply to this section)

(Criteria listed in the preceding section also apply to this section)					
Criteria	JORC Code explanation				
Sampling techniques	 Nature and quality of sampling (e.g., cut channels, random of lnclude reference to measures taken to ensure sample represented to the determination of mineralisation that are Mate In cases where 'industry standard' work has been done this 				
Drilling techniques	 Drill type (e.g., core, reverse circulation, open-hole hammer, 				
Drill sample recovery	 Method of recording and assessing core and chip sample re Measures taken to maximise sample recovery and ensure re Whether a relationship exists between sample recovery and 				
Logging	 Whether core and chip samples have been geologically and Whether logging is qualitative or quantitative in nature. Core The total length and percentage of the relevant intersections 				
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all If non-core, whether riffled, tube sampled, rotary split, etc ar For all sample types, the nature, quality, and appropriatenes Quality control procedures adopted for all sub-sampling stag Measures taken to ensure that the sampling is representativ Whether sample sizes are appropriate to the grain size of th 				
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and For geophysical tools, spectrometers, handheld XRF instrun Nature of quality control procedures adopted (e.g., standard 				
Verification of sampling and assaying	 The verification of significant intersections by either indepen The use of twinned holes. Documentation of primary data, data entry procedures, data Discuss any adjustment to assay data. 				
Location of data points	 Accuracy and quality of surveys used to locate drill holes (co Specification of the grid system used. Quality and adequacy of topographic control. 				
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to es Whether sample compositing has been applied. 				
Orientation of data in relation to geological structur	 Whether the orientation of sampling achieves unbiased sam If the relationship between the drilling orientation and the ori 				
Sample security	The measures taken to ensure sample security.				
Audits or reviews	The results of any audits or reviews of sampling techniques				

18.12.2025 Seite 11/13

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria JORC Code explanation Type, reference name/number, location and ov Mineral tenement and land tenure status The security of the tenure held at the time of re Exploration done by other parties Acknowledgment and appraisal of exploration in Geology Deposit type, geological setting, and style of m A summary of all information material to the un Drill hole Information If the exclusion of this information is justified or In reporting Exploration Results, weighting ave Where aggregate intercepts incorporate short I Data aggregation methods The assumptions used for any reporting of met • These relationships are particularly important in Relationship between mineralisation widths and intercept lengths If the geometry of the mineralisation with respe If it is not known and only the down hole length Diagrams Appropriate maps and sections (with scales) are Balanced reporting Where comprehensive reporting of all Explorat Other substantive exploration data • Other exploration data, if meaningful and mate The nature and scale of planned further work (Further work Diagrams clearly highlighting the areas of poss No Section 3 or 4 report as no Mineral Resources or Ore Reserves are reported in this Appendix

Photos accompanying this announcement are available at

https://www.globenewswire.com/NewsRoom/AttachmentNg/540ec385-0b56-4930-9955-d918c15766e2

18.12.2025 Seite 12/13

³ Refer to ASX news release by Novo Resources dated 16/12/2024 - Novo Strengthens Portfolio with Two High-Grade Gold Projects in NSW, Australia

https://www.globenewswire.com/NewsRoom/AttachmentNg/1256943b-c790-4d1b-bfa3-653e664b92f0 https://www.globenewswire.com/NewsRoom/AttachmentNg/0829898f-fad0-4e99-84f4-c7018ea24d34 https://www.globenewswire.com/NewsRoom/AttachmentNg/2d4edc6c-d557-4e05-800c-aea39ffbe737 https://www.globenewswire.com/NewsRoom/AttachmentNg/3656539e-4794-4c59-9471-98604893f417 https://www.globenewswire.com/NewsRoom/AttachmentNg/8429e080-cfc2-4804-8710-bc4eef98d0a3 https://www.globenewswire.com/NewsRoom/AttachmentNg/af0bed22-4da7-4ac2-84c9-11251ea8e4e3 https://www.globenewswire.com/NewsRoom/AttachmentNg/a62ccce8-36d9-40ec-ad26-93c866d86068

Dieser Artikel stammt von GoldSeiten.de

Die URL für diesen Artikel lautet: https://www.goldseiten.de/artikel/652682--Promising-Surface-Exploration-Informs-Tibooburra-RC-Drilling-Program.html

Für den Inhalt des Beitrages ist allein der Autor verantwortlich bzw. die aufgeführte Quelle. Bild- oder Filmrechte liegen beim Autor/Quelle bzw. bei der vom ihm benannten Quelle. Bei Übersetzungen können Fehler nicht ausgeschlossen werden. Der vertretene Standpunkt eines Autors spiegelt generell nicht die Meinung des Webseiten-Betreibers wieder. Mittels der Veröffentlichung will dieser lediglich ein pluralistisches Meinungsbild darstellen. Direkte oder indirekte Aussagen in einem Beitrag stellen keinerlei Aufforderung zum Kauf-/Verkauf von Wertpapieren dar. Wir wehren uns gegen jede Form von Hass, Diskriminierung und Verletzung der Menschenwürde. Beachten Sie bitte auch unsere AGB/Disclaimer!

Die Reproduktion, Modifikation oder Verwendung der Inhalte ganz oder teilweise ohne schriftliche Genehmigung ist untersagt! Alle Angaben ohne Gewähr! Copyright © by GoldSeiten.de 1999-2025. Es gelten unsere <u>AGB</u> und <u>Datenschutzrichtlinen</u>.

18.12.2025 Seite 13/13