

Southern Cross Gold Drills 12.2 m @ 32.4 g/t Gold at Golden Dyke

06.01.2026 | [Newsfile](#)

Vancouver, January 6, 2026 - [Southern Cross Gold Consolidated Ltd.](#) (TSX: SXGC) (ASX: SX2) (OTCQX: SXGCF) (FSE: MV3) ("SXGC", "SX2" or the "Company") announces results from four drillholes from the 100%-owned Sunday Creek Gold-Antimony Project in Victoria (Figures 1 to 5). Best results included 12.2 m @ 32.4 g/t Au from 447.0 m in drillhole SDDSC188, including the highest individual Au assay (0.2 m @ 1,050 g/t Au) in Golden Dyke to date.

Five High Level Takeaways:

- Best Gold Discovery at Golden Dyke: Best gold intersection drilled at Golden Dyke to date - 12.2 m @ 33.3 g/t AuEq (32.4 g/t Au, 0.4% Sb) from 447 m depth. This confirms Golden Dyke as a major high-grade zone within the Sunday Creek project and ranks as the 15th best composite hit across the entire project.
- Exceptional Individual Gold Grades: A single sample returned 0.2 m @ 1,050 g/t Au (plus 0.55% Sb) from 452.7 m - the highest gold grade ever recorded at Golden Dyke. Two additional samples exceeded 250 g/t gold: 0.35 m @ 259 g/t Au (plus 1.45% Sb) and 0.18 m @ 301 g/t Au (plus 1.52% Sb), all within a high-grade core of 3.1 m @ 126.6 g/t AuEq.
- Growing System: The drilling intersected eight vein sets in total, including two new mineralized structures (GD82 and GD83) outside the current Exploration Target. These returned 0.2 m @ 29.8 g/t AuEq and 3.9 m @ 3.9 g/t AuEq respectively, with a 50 m to 70 m step-down from previous drilling - expanding the potential size of the deposit.
- Connected System Confirmed: SDDSC186W1 successfully intersected altered sediment between Golden Dyke and Rising Sun, linking these two areas.
- Major Exploration Upside: Golden Dyke has only been defined with confidence to 600 m below surface - much shallower than Rising Sun which extends to over 1,100 m.

Michael Hudson, President & CEO states: "SDDSC188 has delivered the best composite intersection in Golden Dyke to date with 12.2 m @ 33.3 g/t AuEq, including the highest individual gold assay in Golden Dyke at 0.2 m @ 1,050 g/t Au. This hole intersected eight vein sets in Golden Dyke, with two vein sets located outside the current Exploration Target, achieving a 50 m to 70 m step-down and adding significant tonnage potential to the system.

"Importantly, the drilling has now linked Golden Dyke and Rising Sun together, demonstrating these are part of the same large-scale mineralized system. To date, Golden Dyke has been defined with confidence to 600 m below surface, with considerable exploration upside remaining at depth. The consistent high-grade intercepts and robust continuity we're seeing reinforce Sunday Creek's position as a globally significant gold-antimony discovery."

For Those Who Like the Details - Highlights:

SDDSC188 delivered exceptional gold-antimony mineralization at Golden Dyke with the best composite and individual assays to date, while confirming system continuity at depth. The true thickness of the mineralized intervals reported are interpreted to be approximately 55% to 65% of the sampled thickness.

SDDSC188 Key Intercepts (Vein Set GD65):

- 12.2 m @ 33.3 g/t AuEq (32.4 g/t Au, 0.4% Sb) from 447.0 m, including:
 - 3.1 m @ 126.6 g/t AuEq (124.8 g/t Au, 0.8% Sb) from 449.8 m

Individual High-Grade Assays (GD65):

- 0.2 m @ 1,050 g/t Au (0.55% Sb) from 452.72 m; Best Au assay in Golden Dyke
- 0.35 m @ 259 g/t Au (1.45% Sb) from 449.81 m
- 0.18 m @ 301 g/t Au (1.52% Sb) from 451.84 m

New Vein Sets Outside Exploration Target:

- GD82: 0.2 m @ 29.8 g/t AuEq from 519.9 m; 50 m to 70 m step-down
- GD83: 3.9 m @ 3.9 g/t AuEq from 535.5 m; 50 to 70 m step-down

System Scale:

- Eight vein sets were intersected (two outside current Exploration Target)
- Golden Dyke defined with confidence to 600 m below surface
- SDDSC186W1 linked Golden Dyke and Rising Sun systems
- 130 m to 140 m wide mineralized zone across Golden Dyke in SDDSC188

Drill Hole Discussion

Four drill holes are reported here that targeted the Golden Dyke prospect from both east to west and west to east orientations.

SDDSC188

SDDSC188, drilled west to east, intersected eight vein sets in Golden Dyke, including two vein sets outside the current exploration target. The hole achieved a 50 m to 70 m step-down on vein sets GD82 and GD83, including defining a high-grade core and demonstrating robust continuity at depth. SDDSC188 drilled the best composite intersection in Golden Dyke to date with 12.2 m @ 33.3 g/t AuEq, which also included the best individual gold intercept in Golden Dyke to date, with a standout result of 0.2 m @ 1,050 g/t Au (0.55% Sb) from 452.72 m, alongside two additional intercepts exceeding 100 g/t Au, 0.35 m @ 259 g/t Au (1.45% Sb) from 449.81 m and 0.18 m @ 301 g/t Au (1.52% Sb) from 451.84 m all hosted within the vein set GD65.

The intersection in GD65 was a 16 m down dip and 48 m up dip intersection from previous results; SDDSC171 4.2 m @ 4.5 g/t AuEq (2.8 g/t Au, 0.7% Sb) from 502.8 m (Reported August 26, 2025) and SDDSC132 12.5 m @ 4.0 g/t AuEq (2.4 g/t Au, 0.6% Sb) from 541.9 m (Reported October 16, 2024).

Selected highlights include:

- 12.2 m @ 33.3 g/t AuEq (32.4 g/t Au, 0.4% Sb) from 447.0 m, including:
 - 3.1 m @ 126.6 g/t AuEq (124.8 g/t Au, 0.8% Sb) from 449.8 m (Best hit in Golden Dyke to date)

- 9.4 m @ 5.2 g/t AuEq (3.6 g/t Au, 0.7% Sb) from 496.4 m, including:
 - 1.7 m @ 12.7 g/t AuEq (10.9 g/t Au, 0.7% Sb) from 499.7 m
- 0.2 m @ 29.8 g/t AuEq (29.6 g/t Au, 0.1% Sb) from 519.9 m (New GD82 outside Exploration Target)
- 3.9 m @ 3.9 g/t AuEq (1.7 g/t Au, 0.9% Sb) from 535.5 m (New GD83 outside Exploration Target)
- 11.9 m @ 2.0 g/t AuEq (1.4 g/t Au, 0.2% Sb) from 556.6 m

These continuing drill results demonstrate consistent similarities to the Rising Sun deposit in terms of grade tenor and mineralization style. Golden Dyke exhibits the same characteristics observed at Rising Sun: high-grade tenor with high-grade intercepts, frequent visible gold occurrences, and elevated antimony values. The critical distinction is that Golden Dyke has only been defined with confidence down to 600 m below the surface and still has considerably less drilling than Rising Sun.

SDDSC186, SDDSC186W1 & SDDSC186W2

SDDSC186, drilled west to east, was abandoned due to excessive deviation out of the system, prompting a wedge and directional drilling strategy focused on systematic testing of the prospective corridor outside of the known defined area.

SDDSC186W1 successfully intersected altered sediment between Golden Dyke and Rising Sun, expanding the prospective package in a previously untested 20 m corridor where dyke and altered sediment locations were unknown between Rising Sun and Golden Dyke. This intersection further reinforces the understanding of Golden Dyke and Rising Sun being part of the same system.

SDDSC186W2 deviated too far south and failed to intersect the target dyke and altered sediment package, instead intersecting only footwall dyke splays.

Pending Results and Update

Nine drill rigs are currently operational on the Sunday Creek project with one additional drill rig dedicated to regional exploration. Results are pending from 41 holes currently being processed and analyzed including ten holes that are actively being drilled and two abandoned holes (Figure 2). The Company continues its ongoing 200,000 m drill program through to Q1 2027.

About Sunday Creek

The Sunday Creek epizonal-style gold project is located 60 km north of Melbourne within 16,900 hectares ("Ha") of granted exploration tenements. SXGC is also the freehold landholder of 1,392 Ha that forms the key portion in and around the main drilled area at the Sunday Creek Project.

Gold and antimony form in a relay of vein sets that cut across a steeply dipping zone of intensely altered rocks (the "host"). These vein sets are like a "Golden Ladder" structure where the main host extends between the side rails deep into the earth, with multiple cross-cutting vein sets that host the gold forming the rungs. At Apollo and Rising Sun these individual 'rungs' have been defined over 600 m depth extent from surface to over 1,100 m below surface, are 2.5 m to 3.5 m wide (median widths) (and up to 10 m), and 20 m to 100 m in strike.

Cumulatively, 235 drill holes for 107,414.51 m have been reported from Sunday Creek since late 2020. This amount includes five holes for 929 m that have been drilled for geotechnical purposes and 22 holes for 2,973.77 m that were abandoned due to deviation or hole conditions. Fourteen drillholes for 2,383 m have been reported regionally outside of the main Sunday Creek drill area. A total of 64 historic drill holes for 5,599 m were completed from the late 1960s to 2008. The project now contains a total of Seventy-three (73)

>100 g/t AuEq x m and eighty (80) >50 to 100 g/t AuEq x m drill holes by applying a 2 m @ 1 g/t AuEq lower cut.

Southern Cross Gold's systematic drill program is strategically targeting these significant vein formations, which are currently defined over 1,350 m strike of the host dyke/sediment ("rails of the ladder") from Christina to Apollo prospects, of which approximately 620 m has been more intensively drill tested (Rising Sun to Apollo). At least 95 'rungs' have been defined to date, defined by high-grade intercepts (20 g/t Au to >7,330 g/t Au) along with lower grade edges. Ongoing step-out drilling is aiming to uncover the potential extent of this mineralized system (Figure 5).

Geologically, the project is located within the Melbourne Structural Zone in the Lachlan Fold Belt. The regional host to the Sunday Creek mineralization is an interbedded turbidite sequence of siltstones and minor sandstones metamorphosed to sub-greenschist facies and folded into a set of open north-west trending folds.

Further Information

Further discussion and analysis of the Sunday Creek project is available through the interactive Vrify 3D animations, presentations and videos all available on the SXGC website. These data, along with an interview on these results with President & CEO/Managing Director Michael Hudson can be viewed at www.southerncrossgold.com.

No upper gold grade cut is applied in the averaging and intervals are reported as drill thickness. However, during future Mineral Resource studies, the requirement for assay top cutting will be assessed. The Company notes that due to rounding of assay results to one significant figure, minor variations in calculated composite grades may occur.

Figures 1 to 5 show project location, plan and longitudinal views of drill results reported here and Tables 1 to 3 provide collar and assay data. The true thickness of the mineralized intervals reported individually as estimated true widths ("ETW"), otherwise they are interpreted to be approximately 55% to 65% of the sampled thickness for other reported holes. Lower grades were cut at 1.0 g/t AuEq lower cutoff over a maximum width of 2 m with higher grades cut at 5.0 g/t AuEq lower cutoff over a maximum of 1 m width unless specified unless otherwise* specified to demonstrate higher grade assays.

Critical Metal Epizonal Gold-Antimony Deposits

Sunday Creek (Figure 5) is an epizonal gold-antimony deposit formed in the late Devonian (like Fosterville, Costerfield and Redcastle), 60 million years later than mesozonal gold systems formed in Victoria (for example Ballarat and Bendigo). Epizonal deposits are a form of orogenic gold deposit classified according to their depth of formation: epizonal (<6 km), mesozonal (6 km to 12 km) and hypozonal (>12 km).

Epizonal deposits in Victoria often have associated high levels of the critical metal, antimony, and Sunday Creek is no exception. China claims a 56 per cent share of global mined supplies of antimony, according to a 2023 European Union study. Antimony features highly on the critical minerals lists of many countries including Australia, the United States of America, Canada, Japan and the European Union. Australia ranks seventh for antimony production despite all production coming from a single mine at Costerfield in Victoria, located nearby to all SXGC projects. Antimony alloys with lead and tin which results in improved properties for solders, munitions, bearings and batteries. Antimony is a prominent additive for halogen-containing flame retardants. Adequate supplies of antimony are critical to the world's energy transition, and to the high-tech industry, especially the semi-conductor and defence sectors where it is a critical additive to primers in munitions.

In August 2024, the Chinese government announced it will place export limits from September 15, 2024 on antimony and antimony products. This puts pressure on Western defence supply chains and negatively affect the supply of the metal and push up pricing given China's dominance of the supply of the metal in the global markets. This is positive for SXGC as we are likely to have one of the very few large and high-quality projects of antimony in the western world that can feed western demand into the future.

Antimony represents approximately 21% to 24% in situ recoverable value of Sunday Creek at an AuEq of 2.39 ratio.

Company-wide Remuneration Review

The Company also announces that the Board, in consultation with the Company's Remuneration & Nomination Committee, has conducted a company-wide review of the fixed remuneration currently paid to its executives, including President and CEO, Mr. Michael Hudson, and has approved an increase in Mr. Hudson's annual base remuneration to AU\$620,536. Mr Hudson will also be eligible to receive a Short-Term Incentive (STI) of up to 20% of his base remuneration and the issue of Long-Term Incentives (LTI's) will be subject to shareholder approval. The increase is effective January 1, 2026.

About Southern Cross Gold Consolidated Limited (TSX: SXGC) (ASX: SX2) (OTCQX: SXGCF) (FSE: MV3)

Southern Cross Gold Consolidated Ltd. (TSX: SXGC) (ASX: SX2) (OTCQX: SXGCF), is building Australia's a significant gold-antimony project at the Sunday Creek Gold-Antimony Project, located 60 km north of Melbourne. Sunday Creek has emerged as one of the Western world's most significant gold and antimony discoveries, with exceptional drilling results including 73 intersections exceeding 100 g/t AuEq x m from 107,415 km of drilling. The mineralization follows a "Golden Ladder" structure over 12 km of strike length, with confirmed continuity from surface to 1,100 m depth.

Sunday Creek's strategic value is enhanced by its dual-metal profile. The Company is building a significant project - and in doing so, securing a critical mineral the Western world needs. With antimony contributing approximately 20% of in-situ value alongside gold, Sunday Creek can be developed primarily based on gold economics, which reduces antimony-related risks while maintaining strategic supply optionality. This has gained increased significance following China's export restrictions on antimony, a critical metal for defence and semiconductor applications. Southern Cross' inclusion in the US Defense Industrial Base Consortium (DIBC) and Australia's AUKUS-related legislative changes position it as a potential key Western antimony supplier.

Technical fundamentals further strengthen the investment case, with preliminary metallurgical work showing non-refractory mineralization suitable for conventional processing and gold recoveries of 93% to 98% through gravity and flotation.

With a strong cash position, 1,392 Ha of strategic freehold land ownership, and a large 200 km drill program planned through Q1 2027, SXGC is well-positioned to advance this globally significant gold-antimony discovery in a tier-one jurisdiction, delivering milestone by milestone.

- Ends -

This announcement has been approved for release by the Board of Southern Cross Gold Consolidated Ltd.

For further information, please contact:

Mariana Bermudez - Corporate Secretary
mb@southerncrossgold.com or +1 604 685 9316
Executive Office
1305 - 1090 West Georgia Street Vancouver, BC, V6E 3V7, Canada

Nicholas Mead - Corporate Development
info@southerncrossgold.com.au or +61 415 153 122

Justin Mouchacca, Assistant Company Secretary,
jm@southerncrossgold.com.au or +61 3 8630 3321

Subsidiary Office
Level 21, 459 Collins Street, Melbourne, VIC, 3000, Australia
NI 43-101 Technical Background and Qualified Person

Michael Hudson, President, CEO and Managing Director of SXGC, and a Fellow of the Australasian Institute of Mining and Metallurgy, and Mr Kenneth Bush, Exploration Manager of SXGC and a RPGeo (10315) of the Australian Institute of Geoscientists, are the Qualified Persons as defined by the NI 43-101. They have prepared, reviewed, verified and approved the technical contents of this release.

Analytical samples are transported to the Bendigo facility of On Site Laboratory Services ("On Site") which operates under both an ISO 9001 and NATA quality systems. Samples were prepared and analyzed for gold using the fire assay technique (PE01S method; 25 gram charge), followed by measuring the gold in solution with flame AAS equipment. Samples for multi-element analysis (BM011 and over-range methods as required) use aqua regia digestion and ICP-MS analysis. The QA/QC program of Southern Cross Gold consists of the systematic insertion of certified standards of known gold content, blanks within interpreted mineralized rock and quarter core duplicates. In addition, On Site inserts blanks and standards into the analytical process.

SXGC considers that both gold and antimony that are included in the gold equivalent calculation ("AuEq") have reasonable potential to be recovered and sold at Sunday Creek, given current geochemical understanding, historic production statistics and geologically analogous mining operations. Historically, ore from Sunday Creek was treated onsite or shipped to the Costerfield mine, located 54 km to the northwest of the project, for processing during WW1. The Costerfield mine corridor, now owned by Alkane Resources (previously Mandalay Resources) contains two million ounces of equivalent gold (Mandalay Resources Q3 2021 Results), and in 2020 was the sixth highest-grade global underground mine and a top 5 global producer of antimony.

SXGC considers that it is appropriate to adopt the same gold equivalent variables as Mandalay Resources Ltd in its 2024 End of Year Mineral Reserves and Resources Press Release, dated February 20, 2025. The gold equivalence formula used by Mandalay Resources was calculated using Costerfield's 2024 production costs, using a gold price of US\$2,500 per ounce, an antimony price of US\$19,000 per tonne and 2024 total year metal recoveries of 91% for gold and 92% for antimony, and is as follows:

$$\text{AuEq} = \text{Au (g/t)} + 2.39 \times \text{Sb (\%)}$$

Based on the latest Costerfield calculation and given the similar geological styles and historic toll treatment of Sunday Creek mineralization at Costerfield, SXGC considers that a $\text{AuEq} = \text{Au (g/t)} + 2.39 \times \text{Sb (\%)}$ is appropriate to use for the initial exploration targeting of gold-antimony mineralization at Sunday Creek.

JORC Competent Person Statement

Information in this announcement that relates to new exploration results contained in this report is based on information compiled by Mr Kenneth Bush and Mr Michael Hudson. Mr Bush is a Member of Australian

Institute of Geoscientists and a Registered Professional Geologist in the field of Mining (#10315) and Mr Hudson is a Fellow of The Australasian Institute of Mining and Metallurgy. Mr Bush and Mr Hudson each have sufficient experience relevant to the style of mineralization and type of deposit under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Bush is Exploration Manager and Mr Hudson is President, CEO and Managing Director of Southern Cross Gold Consolidated Limited and both consent to the inclusion in the report of the matters based on their information in the form and context in which it appears.

Certain information in this announcement that relates to prior exploration results is extracted from the Independent Geologist's Report dated 11 December 2024 which was issued with the consent of the Competent Person, Mr Steven Tambanis. The report is included the Company's prospectus dated 11 December 2024 and is available at www.asx.com.au under code "SX2". The Company confirms that it is not aware of any new information or data that materially affects the information related to exploration results included in the original market announcement. The Company confirms that the form and context of the Competent Persons' findings in relation to the report have not been materially modified from the original market announcement.

Certain information in this announcement also relates to prior drill hole exploration results, are extracted from the following announcements, which are available to view on www.southerncrossgold.com:

- 4 October, 2022 SDDSC046, 20 October, 2022 SDDSC049, 5 September, 2023 SDDSC077B, 12 October, 2023 SDDLV003 & 4, 23 October, 2023 SDDSC082, 9 November, 2023 SDDSC091, 14 December, 2023 SDDSC092, 5 March, 2024 SDDSC107, 30 May, 2024 SDDSC117, 13 June, 2024 SDDSC118, 5 September, 2024 SDDSC130, 28 October, 2024 SDDSC137W2, 28 November, 2024 SDDSC141, 9 December, 2024 SDDSC145, 18 December, 2024 SDDSC129 & 144, 28 May, 2025 SDDSC161, 16 June, 2025 SDDSC162, 26 August, 2025 SDDSC171, 8 September, 2025 SDDSC170A,

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original document/announcement and the Company confirms that the form and context in which the Competent Person's findings are presented have not materially modified from the original market announcement.

Forward-Looking Statement

This news release contains forward-looking statements. Forward-looking statements involve known and unknown risks, uncertainties and assumptions and accordingly, actual results and future events could differ materially from those expressed or implied in such statements. You are hence cautioned not to place undue reliance on forward-looking statements. All statements other than statements of present or historical fact are forward-looking statements. Forward-looking statements include words or expressions such as "proposed", "will", "subject to", "near future", "in the event", "would", "expect", "prepared to" and other similar words or expressions. Factors that could cause future results or events to differ materially from current expectations expressed or implied by the forward-looking statements include general business, economic, competitive, political, social uncertainties; the state of capital markets, unforeseen events, developments, or factors causing any of the expectations, assumptions, and other factors ultimately being inaccurate or irrelevant; and other risks described in the Company's documents filed with Canadian or Australian (under code SX2) securities regulatory authorities. You can find further information with respect to these and other risks in filings made by the Company with the securities regulatory authorities in Canada or Australia (under code SX2), as applicable, and available for the Company in Canada at www.sedarplus.ca or in Australia at www.asx.com.au (under code SX2). Documents are also available at www.southerncrossgold.com The Company disclaims any obligation to update or revise these forward-looking statements, except as required by applicable law.

Figure 1: Sunday Creek plan view showing selected results from holes SDDSC186, SDDSC186W1, SDDSC186W2 and SDDSC188 reported here (dark blue highlighted box, black trace), with selected prior reported drill holes.

To view an enhanced version of this graphic, please visit:
https://images.newsfilecorp.com/files/11541/279545_352ed0a88403f946_001full.jpg

Figure 2: Sunday Creek plan view showing selected drillhole traces from holes SDDSC186, SDDSC186W1, SDDSC186W2 and SDDSC188 reported here (black trace), with prior reported drill holes (grey trace) and currently drilling and assays pending hole traces (dark blue).

To view an enhanced version of this graphic, please visit:
https://images.newsfilecorp.com/files/11541/279545_352ed0a88403f946_002full.jpg

Figure 3: Sunday Creek longitudinal section across A-B in the plane of the dyke breccia/ altered sediment host looking towards the NW (striking 56 degrees) indicating mineralized vein sets. Showing holes SDDSC186, SDDSC186W1, SDDSC186W2 and SDDSC188 reported here (dark blue highlighted box, black trace), with selected intersections and prior reported drill holes. The vertical extents of the vein sets are limited by proximity to drill hole pierce points.

To view an enhanced version of this graphic, please visit:
https://images.newsfilecorp.com/files/11541/279545_352ed0a88403f946_003full.jpg

Figure 4: Sunday Creek regional plan view showing soil sampling, structural framework, regional historic epizonal gold mining areas and broad regional areas tested by 12 holes for 2,383 m drill program. The regional drill areas are at Tonstal, Consols and Leviathan located 4,000-7,500 m along strike from the main drill area at Golden Dyke- Apollo. Map in GDA94/ MGA Zone 55.

To view an enhanced version of this graphic, please visit:
https://images.newsfilecorp.com/files/11541/279545_352ed0a88403f946_004full.jpg

Figure 5: Location of the Sunday Creek project, along with the 100% owned Redcastle Gold-Antimony Project

To view an enhanced version of this graphic, please visit:
https://images.newsfilecorp.com/files/11541/279545_352ed0a88403f946_005full.jpg

Table 1: Drill collar summary table for recent drill holes in progress.

This Release

Hole ID	Depth (m)	Prospect	East GDA94 Z55	North GDA94 Z55	Elevation (m)	Dip	Azimuth GDA94 Z55
SDDSC186	791.5	Golden Dyke	330950.5	55868006.3	313.8	-54	262.6
SDDSC186W1	774.1	Golden Dyke	330950.5	55868006.3	313.8	-54	262.6
SDDSC186W2	1100.2	Golden Dyke	330950.5	55868006.3	313.8	-54	262.6
SDDSC188	702.8	Christina	330218.3	55867664	268.9	-50.5	57.9
Currently being processed and analyzed							
Hole ID	Depth (m)	Prospect	East GDA94 Z55	North GDA94 Z55	Elevation (m)	Dip	Azimuth GDA94 Z55
SDDSC176	865.8	Golden Dyke	330950.2	55868006.1	313.7	-53.2	257.3

Hole ID	Depth (m)	Prospect	East GDA94 Z55	North GDA94 Z55	Elevation (m)	Dip	Azimuth GDA94 Z55
SDDSC180	1159.77	Christina	330753.25867732.9	306.8	-45	273.1	
SDDSC187	518.3	Rising Sun	330510.75867852.7	295.4	-50.5	75.4	
SDDSC190	451.8	Rising Sun	330511.45867852.5	295.5	-40.8	80.1	
SDDSC191W1	11132.9	Christina	330753.55867733	306.8	-46.3	275.2	
SDDSC193	668.1	Golden Dyke	330775.45867891	295.5	-58.6	262.2	
SDDSC194	929	Golden Dyke	330811.45867596.4	295.1	-64.4	310	
SDDSC194W1	In Progress plan 1650 m	Golden Dyke	330811.45867596.4	295.1	-64.4	311.2	
SDDSC195	152.15	Apollo	330989.75867715.6	318	-53.3	60.5	
SDDSC196	1082.53	Rising Sun	330484.25867893.4	289.5	-64.4	74.8	
SDDSC197	791.5	Golden Dyke	330217.85867664.2	268.9	-58.7	50.8	
SDDSC198	273.6	Apollo	331180.45867849.1	306.1	-31.5	248.6	
SDDSC199	503.43	Apollo	330887.55867704.5	312.7	-42.8	52.2	
SDDSC200	320.54	Apollo	330887.25867704.3	312.7	-47.8	53	
SDDSC201	321.4	Rising Sun	330948.35868003.4	313.3	-28.9	231.3	
SDDSC202	In Progress plan 950 m	Apollo	331596.25867936.6	345.6	-43.4	266.9	
SDDSC203	547	Golden Dyke	330775.35867888.9	295.5	-47.5	253.4	
SDDSC204	1208.3	Apollo	331615.65867952.4	346.5	-58.2	270.4	
SDDSC205	In Progress plan 1320 m	Rising Sun	330339.85867858.5	276.8	-64.6	75.8	
SDDSC206	286.2	Golden Dyke	330752.75867734.4	306.9	-33	301	
SDDSC207	584.25	Christina	330094.85867459.3	278.3	-48.8	20.7	
SDDSC208	929.3	Christina	330753.55867733	306.7	-47.1	281	
SDDSC209	271.58	Apollo East	331463.35867746.4	341.2	-30.5	34	
SDDSC210	512	Golden Dyke	330813.65867847.5	301.1	-43.6	264.3	
SDDSC211	380	Golden Dyke	330700.35867880.2	299.4	-40.1	250.4	
SDDSC212	438.7	Apollo East	331464.95867866.4	333.2	-33.2	261.3	
SDDSC213	941.4	Golden Dyke	330094.25867458.6	278.3	-62.6	14.6	
SDDSC214	In Progress plan 1150 m	Apollo	331615.55867952.7	346.8	-55.2	269	
SDDSC215	476.7	Regional	331603.65867183.7	304.9	-38.2	15.4	
SDDSC216A	572.2	Golden Dyke	330701.25867880.5	299.6	-46.1	250.6	
SDDSC217	In Progress plan 500 m	Apollo East	331481.25867839.5	335.4	-25	261.9	
SDDSC218	In Progress plan 700 m	Golden Dyke	330813.65867847.5	301.1	-47.6	265.5	
SDDSC219	389	Golden Dyke	330701.55867880.3	299.6	-49.2	247.8	
SDDSC220	In Progress plan 520 m	Christina	329780.95867551.9	286.5	-26	70.8	
SDDSC221	926.6	Golden Dyke	330754.15867733	307	-50.6	284.1	
SDDSC224	In Progress plan 505 m	Golden Dyke	330700.35867880.2	299.4	-37	245.8	
SDDSC225	In Progress plan 1270 m	Golden Dyke	330753.55867733	306.8	-52.8	283.8	

Regional holes currently being processed and analyzed

Hole ID	Press Release	Depth	Prospect	East GDA94 Z55	North GDA94 Z55	Elevation (m)	Azimuth GDA94 Z55
SDDRE016	410.5		Redcastle	302732	5927292	194.61	-50 68
SDDRE017	In Progress plan 359.8 m		Redcastle	305388.6	5926618	206.62	-50 70

Abandoned Drillholes currently being processed and analyzed

Hole ID	Press Release	Depth	Prospect	East GDA94 Z55	North GDA94 Z55	Elevation (m)	Dip	Azimuth GDA94 Z55
SDDSC191	864.4		Christina	330753.55867733	306.8	-46.1	275.2	
SDDSC216	131.2		Golden Dyke	330700.35867880.2	299.4	-46.5	252.3	

Table 2: Table of mineralized drill hole intersections reported from SDDSC186, SDDSC186W1, SDDSC186W2 and SDDSC188 with two cutoff criteria. Lower grades cut at 1.0 g/t AuEq lower cutoff over a maximum of 2 m with higher grades cut at 5.0 g/t AuEq cutoff over a maximum of 1 m. Significant intersections and interval depths are rounded to one decimal place.

Hole number	From (m)	To (m)	Interval (m)	Au g/t	Sb %	AuEq g/t
SDDSC188	446.98	459.18	12.20	32.4	0.4	33.3

Hole number	From (m)	To (m)	Interval (m)	Au g/t	Sb %	AuEq g/t
Including	449.81	452.91	3.10	124.8	0.8	126.6
SDDSC188	466.81	468.91	2.10	1.1	0.6	2.5
SDDSC188	496.36	505.76	9.40	3.6	0.7	5.2
Including	499.73	501.43	1.70	10.9	0.7	12.7
Including	502.76	502.96	0.20	0.4	19.5	47.0
SDDSC188	519.90	520.10	0.20	29.6	0.1	29.8
SDDSC188	535.47	539.37	3.90	1.7	0.9	3.9
Including	536.32	536.82	0.50	5.6	5.7	19.1
SDDSC188	556.59	568.49	11.90	1.4	0.2	2.0
Including	565.88	567.08	1.20	8.1	0.1	8.3
SDDSC188	572.10	575.10	3.00	1.3	0.0	1.3

Table 3: All individual assays reported from SDDSC186, SDDSC186W1, SDDSC186W2 and SDDSC188 reported here >0.1g/t AuEq. Individual assay and sample intervals are reported to two decimal places.

Hole number	From (m)	To (m)	Interval (m)	Au g/t	Sb %	AuEq g/t
SDDSC186	533.93	534.25	0.32	0.14	0.00	0.15
SDDSC186	560.1	560.66	0.56	0.12	0.00	0.13
SDDSC186	564.53	564.82	0.29	0.3	0.01	0.31
SDDSC186	582	583	1.00	0.22	0.00	0.23
SDDSC186	658	659	1.00	0.14	0.00	0.15
SDDSC186	688.21	689.51	1.30	0.22	0.00	0.23
SDDSC186	706.45	706.76	0.31	0.71	0.02	0.75
SDDSC186	706.76	707.5	0.74	0.14	0.07	0.30
SDDSC186	707.5	708.8	1.30	0.23	0.00	0.23
SDDSC186	729	730.15	1.15	0.34	0.00	0.35
SDDSC186W1	575.25	576	0.75	0.14	0.00	0.15
SDDSC186W1	578.04	578.6	0.56	0.19	0.00	0.19
SDDSC186W1	578.6	578.81	0.21	0.14	0.00	0.15
SDDSC186W1	588.56	589.55	0.99	0.1	0.00	0.11
SDDSC186W1	661.83	662.3	0.47	0.2	0.00	0.21
SDDSC186W1	712.3	713.6	1.30	-0.01	0.06	0.13
SDDSC186W1	717.6	717.81	0.21	0.26	0.00	0.26
SDDSC186W1	719.91	720.04	0.13	0.19	0.00	0.19
SDDSC186W1	720.68	721	0.32	0.16	0.04	0.26
SDDSC186W1	721.23	721.53	0.30	0.25	0.00	0.26
SDDSC186W1	721.53	722.1	0.57	0.17	0.00	0.18
SDDSC186W1	735.41	736.09	0.68	-0.01	0.05	0.10
SDDSC186W1	736.19	736.36	0.17	1.16	0.00	1.17
SDDSC186W1	740.23	740.44	0.21	0.13	0.00	0.14
SDDSC186W1	743.3	743.8	0.50	0.33	0.00	0.34
SDDSC186W1	743.8	743.93	0.13	0.4	0.00	0.41
SDDSC186W1	743.93	744.12	0.19	0.15	0.00	0.16
SDDSC186W1	744.12	744.3	0.18	0.25	0.15	0.61
SDDSC186W1	746	746.36	0.36	0.12	0.00	0.13
SDDSC186W1	748.86	750	1.14	0.19	0.01	0.21
SDDSC186W1	754	755	1.00	0.19	0.00	0.20
SDDSC186W1	755	756	1.00	0.2	0.00	0.20
SDDSC186W2	811.03	811.65	0.62	0.3	0.00	0.31
SDDSC186W2	893.9	895.24	1.34	0.21	0.00	0.21
SDDSC188	137.01	137.44	0.43	-0.01	0.06	0.12
SDDSC188	147.9	148.97	1.07	0.81	0.01	0.82
SDDSC188	148.97	149.11	0.14	0.99	0.01	1.01
SDDSC188	149.11	150.16	1.05	0.5	0.00	0.51
SDDSC188	150.16	150.6	0.44	1.04	0.00	1.05

Hole number	From (m)	To (m)	Interval (m)	Au g/t	Sb %	AuEq g/t
SDDSC188	150.6	151.07	0.47	0.52	0.00	0.53
SDDSC188	151.07	151.87	0.80	1.05	0.00	1.06
SDDSC188	151.87	152.88	1.01	0.48	0.00	0.49
SDDSC188	154.8	155.3	0.50	0.12	0.01	0.15
SDDSC188	156.15	156.91	0.76	0.38	0.01	0.40
SDDSC188	156.91	157.19	0.28	0.66	0.01	0.68
SDDSC188	157.19	157.5	0.31	1.74	0.02	1.78
SDDSC188	157.5	158	0.50	0.26	0.02	0.30
SDDSC188	164.58	164.74	0.16	1.06	0.01	1.08
SDDSC188	164.74	166	1.26	0.15	0.01	0.16
SDDSC188	168.13	168.31	0.18	2.01	0.01	2.04
SDDSC188	168.31	168.5	0.19	0.91	0.01	0.94
SDDSC188	168.5	168.74	0.24	0.7	0.01	0.73
SDDSC188	169.83	170.06	0.23	0.28	0.02	0.32
SDDSC188	170.06	170.9	0.84	0.05	0.02	0.10
SDDSC188	170.9	171	0.10	0.22	0.02	0.26
SDDSC188	175.1	176.04	0.94	0.1	0.01	0.12
SDDSC188	177.92	178.36	0.44	1.7	0.02	1.75
SDDSC188	178.36	178.62	0.26	0.26	0.01	0.29
SDDSC188	185.4	185.6	0.20	1.37	0.02	1.41
SDDSC188	185.6	185.95	0.35	1.25	0.02	1.29
SDDSC188	189.37	189.67	0.30	0.11	0.01	0.14
SDDSC188	199.68	200.18	0.50	0.05	0.03	0.12
SDDSC188	200.18	201.19	1.01	0.07	0.02	0.12
SDDSC188	201.64	202.04	0.40	0.17	0.05	0.30
SDDSC188	202.04	202.28	0.24	0.08	0.03	0.14
SDDSC188	206.41	207.15	0.74	0.12	0.02	0.16
SDDSC188	207.15	207.54	0.39	0.43	0.01	0.44
SDDSC188	207.54	207.87	0.33	0.28	0.01	0.30
SDDSC188	207.87	208.05	0.18	0.08	0.01	0.10
SDDSC188	209.11	210.06	0.95	-0.01	0.06	0.14
SDDSC188	210.35	210.67	0.32	0.22	0.04	0.31
SDDSC188	210.67	211.07	0.40	0.17	0.01	0.20
SDDSC188	212.27	212.87	0.60	0.12	0.00	0.13
SDDSC188	212.87	213.09	0.22	0.19	0.00	0.20
SDDSC188	214.21	214.34	0.13	0.77	0.01	0.79
SDDSC188	214.34	215.1	0.76	0.08	0.01	0.11
SDDSC188	216.55	216.81	0.26	0.03	0.06	0.17
SDDSC188	409.92	410.09	0.17	0.13	0.01	0.14
SDDSC188	442.28	442.9	0.62	0.02	0.04	0.11
SDDSC188	444.3	444.72	0.42	0.32	0.06	0.46
SDDSC188	444.72	444.96	0.24	0.34	0.95	2.61
SDDSC188	444.96	445.36	0.40	0.1	0.01	0.12
SDDSC188	445.36	445.59	0.23	0.2	0.20	0.68
SDDSC188	445.59	446.03	0.44	0.25	0.26	0.87
SDDSC188	446.98	447.51	0.53	0.65	0.50	1.85
SDDSC188	447.51	447.85	0.34	1.61	0.56	2.95
SDDSC188	447.85	447.98	0.13	1.1	0.03	1.16
SDDSC188	447.98	448.12	0.14	2.36	0.04	2.46
SDDSC188	448.12	448.38	0.26	0.92	0.92	3.12
SDDSC188	448.38	448.72	0.34	2.9	0.23	3.45
SDDSC188	448.72	448.93	0.21	2.04	0.22	2.57
SDDSC188	448.93	449.1	0.17	1.5	0.08	1.68
SDDSC188	449.1	449.27	0.17	1.11	0.04	1.22
SDDSC188	449.27	449.59	0.32	3.13	0.73	4.87
SDDSC188	449.59	449.81	0.22	0.57	0.32	1.33

Hole number	From (m)	To (m)	Interval (m)	Au g/t	Sb %	AuEq g/t
SDDSC188	449.81	450.16	0.35	259	1.45	262.47
SDDSC188	450.16	450.27	0.11	50.2	0.13	50.51
SDDSC188	450.27	450.55	0.28	29.8	0.87	31.88
SDDSC188	450.55	451.42	0.87	4.96	0.70	6.63
SDDSC188	451.42	451.54	0.12	9.33	0.92	11.53
SDDSC188	451.54	451.84	0.30	0.86	0.38	1.77
SDDSC188	451.84	452.02	0.18	301	1.52	304.63
SDDSC188	452.02	452.32	0.30	2.38	0.46	3.48
SDDSC188	452.32	452.57	0.25	51	1.11	53.65
SDDSC188	452.57	452.72	0.15	1.13	0.34	1.94
SDDSC188	452.72	452.92	0.20	1050	0.55	1051.31
SDDSC188	452.92	453.67	0.75	1.03	0.13	1.34
SDDSC188	453.67	453.91	0.24	0.56	0.14	0.89
SDDSC188	453.91	454.15	0.24	1.59	0.72	3.31
SDDSC188	454.15	455.16	1.01	0.82	0.04	0.91
SDDSC188	455.16	455.75	0.59	0.09	0.00	0.10
SDDSC188	455.75	456.05	0.30	1.46	0.02	1.51
SDDSC188	457.33	457.57	0.24	0.15	0.00	0.16
SDDSC188	457.57	457.97	0.40	1.02	0.43	2.05
SDDSC188	457.97	458.41	0.44	0.11	0.04	0.21
SDDSC188	458.41	459	0.59	0.39	0.18	0.82
SDDSC188	459	459.2	0.20	1.02	0.13	1.33
SDDSC188	460.2	461.22	1.02	0.14	0.05	0.26
SDDSC188	461.22	462	0.78	0.41	0.04	0.52
SDDSC188	462	462.18	0.18	0.52	0.29	1.21
SDDSC188	462.18	462.86	0.68	0.78	0.03	0.84
SDDSC188	462.86	463.16	0.30	0.46	0.03	0.53
SDDSC188	464.16	464.38	0.22	0.14	0.10	0.38
SDDSC188	464.38	464.49	0.11	5.32	4.52	16.12
SDDSC188	466.59	466.81	0.22	0.22	0.19	0.67
SDDSC188	466.81	466.91	0.10	5.72	3.06	13.03
SDDSC188	466.91	467.32	0.41	0.21	0.15	0.57
SDDSC188	467.32	467.72	0.40	1.77	0.60	3.20
SDDSC188	467.72	468.08	0.36	0.72	1.04	3.21
SDDSC188	468.08	468.18	0.10	0.45	0.49	1.62
SDDSC188	468.18	468.91	0.73	0.84	0.32	1.60
SDDSC188	471.32	471.82	0.50	0.3	0.02	0.35
SDDSC188	475.28	475.5	0.22	0.44	0.35	1.28
SDDSC188	477.5	478.5	1.00	0.09	0.01	0.11
SDDSC188	481.09	481.33	0.24	1.11	0.18	1.54
SDDSC188	482.33	483.33	1.00	-0.01	0.07	0.15
SDDSC188	487.47	488.47	1.00	0.36	0.03	0.42
SDDSC188	488.82	489.06	0.24	0.18	1.28	3.24
SDDSC188	489.33	489.46	0.13	0.09	0.01	0.11
SDDSC188	491.65	491.82	0.17	0.07	0.02	0.12
SDDSC188	493.51	493.86	0.35	2.65	0.17	3.06
SDDSC188	493.86	494.26	0.40	0.25	0.01	0.28
SDDSC188	495.91	496.36	0.45	0.09	0.01	0.12
SDDSC188	496.36	496.95	0.59	2.62	0.57	3.98
SDDSC188	496.95	497.24	0.29	13	1.28	16.06
SDDSC188	497.24	497.5	0.26	0.61	0.32	1.37
SDDSC188	497.5	497.84	0.34	1.32	0.04	1.42
SDDSC188	497.84	498.91	1.07	0.43	0.02	0.47
SDDSC188	498.91	499.29	0.38	1.28	0.18	1.71
SDDSC188	499.73	500.25	0.52	32.2	0.60	33.63
SDDSC188	500.25	501	0.75	1.34	0.42	2.34

Hole number	From (m)	To (m)	Interval (m)	Au g/t	Sb %	AuEq g/t
SDDSC188	501	501.46	0.46	2.51	1.40	5.86
SDDSC188	501.46	501.93	0.47	3.7	0.51	4.92
SDDSC188	501.93	502.58	0.65	3.36	0.44	4.41
SDDSC188	502.58	502.76	0.18	0.06	0.04	0.16
SDDSC188	502.76	502.91	0.15	0.42	19.50	47.03
SDDSC188	502.91	503.73	0.82	0.08	0.16	0.46
SDDSC188	503.73	504.31	0.58	2.17	0.57	3.53
SDDSC188	504.31	504.83	0.52	4	0.33	4.79
SDDSC188	504.83	505.57	0.74	0.54	0.13	0.85
SDDSC188	505.57	505.76	0.19	0.71	0.41	1.69
SDDSC188	505.76	506.87	1.11	0.29	0.06	0.43
SDDSC188	507.61	508.46	0.85	0.19	0.04	0.28
SDDSC188	508.46	508.66	0.20	0.05	0.13	0.36
SDDSC188	508.66	509.07	0.41	0.38	0.22	0.91
SDDSC188	511.05	511.44	0.39	0.05	0.07	0.21
SDDSC188	511.44	511.59	0.15	0.42	0.07	0.58
SDDSC188	511.59	512.08	0.49	0.07	0.02	0.12
SDDSC188	512.58	512.77	0.19	0.38	0.05	0.49
SDDSC188	514.42	514.93	0.51	0.15	0.02	0.20
SDDSC188	515.33	515.44	0.11	1.06	0.24	1.63
SDDSC188	519.36	519.6	0.24	2.32	0.06	2.47
SDDSC188	519.9	520.09	0.19	29.6	0.07	29.76
SDDSC188	521.2	521.39	0.19	0.09	0.03	0.16
SDDSC188	521.39	522.57	1.18	0.09	0.01	0.12
SDDSC188	522.57	522.91	0.34	0.37	0.02	0.41
SDDSC188	522.91	523.17	0.26	0.39	0.05	0.50
SDDSC188	523.17	524	0.83	0.43	0.02	0.48
SDDSC188	524	524.74	0.74	0.09	0.01	0.12
SDDSC188	524.74	525.38	0.64	0.1	0.02	0.15
SDDSC188	525.38	525.69	0.31	0.26	0.05	0.37
SDDSC188	528.12	528.36	0.24	0.09	0.01	0.12
SDDSC188	529.17	529.88	0.71	0.28	0.08	0.46
SDDSC188	529.88	530.9	1.02	0.15	0.03	0.21
SDDSC188	532.67	533	0.33	0.11	0.03	0.17
SDDSC188	533	533.27	0.27	0.42	0.12	0.71
SDDSC188	534.65	535.47	0.82	0.09	0.01	0.12
SDDSC188	535.47	536.32	0.85	1.57	0.17	1.98
SDDSC188	536.32	536.8	0.48	5.59	5.67	19.14
SDDSC188	536.8	537.75	0.95	1.43	0.41	2.41
SDDSC188	537.75	538.34	0.59	0.96	0.29	1.65
SDDSC188	538.34	538.44	0.10	0.24	0.04	0.33
SDDSC188	538.44	539.11	0.67	0.42	0.08	0.60
SDDSC188	539.11	539.21	0.10	1.47	0.32	2.23
SDDSC188	539.21	539.32	0.11	1.31	0.43	2.34
SDDSC188	539.32	540.44	1.12	0.26	0.02	0.31
SDDSC188	552.85	553.56	0.71	0.24	0.01	0.27
SDDSC188	554.25	555.3	1.05	0.57	0.17	0.98
SDDSC188	556.49	556.59	0.10	0.58	0.06	0.73
SDDSC188	556.59	557.11	0.52	1.12	0.43	2.15
SDDSC188	558.3	558.55	0.25	1.62	0.23	2.17
SDDSC188	558.55	559.52	0.97	0.08	0.03	0.15
SDDSC188	559.62	560.62	1.00	1.87	0.91	4.04
SDDSC188	560.62	560.72	0.10	2.46	0.59	3.87
SDDSC188	561.69	562.26	0.57	1.08	0.76	2.90
SDDSC188	562.26	562.81	0.55	0.17	0.53	1.44
SDDSC188	562.81	562.91	0.10	0.2	0.24	0.77

Hole number	From (m)	To (m)	Interval (m)	Au g/t	Sb %	AuEq g/t
SDDSC188	562.91	563.82	0.91	0.47	0.16	0.85
SDDSC188	563.82	563.92	0.10	2.71	0.22	3.24
SDDSC188	563.92	565.03	1.11	0.84	0.23	1.39
SDDSC188	565.03	565.13	0.10	1.56	0.19	2.01
SDDSC188	565.13	565.75	0.62	0.41	0.22	0.94
SDDSC188	565.75	565.88	0.13	2.45	0.43	3.48
SDDSC188	565.88	567.1	1.22	8.14	0.06	8.29
SDDSC188	567.1	568.35	1.25	0.07	0.01	0.10
SDDSC188	568.35	568.45	0.10	1.61	0.15	1.97
SDDSC188	568.45	569.45	1.00	0.46	0.16	0.84
SDDSC188	571.1	572.1	1.00	0.09	0.01	0.11
SDDSC188	572.1	572.21	0.11	18.1	0.57	19.46
SDDSC188	572.21	572.85	0.64	0.14	0.05	0.27
SDDSC188	572.85	573.27	0.42	0.35	0.01	0.38
SDDSC188	573.27	574.09	0.82	0.17	0.01	0.20
SDDSC188	574.09	575.13	1.04	1.38	0.01	1.40
SDDSC188	579	579.9	0.90	0.1	0.02	0.15
SDDSC188	589	590.3	1.30	0.17	0.01	0.19
SDDSC188	592.86	594.16	1.30	0.36	0.00	0.37
SDDSC188	594.16	594.68	0.52	0.2	0.00	0.21
SDDSC188	599.5	599.84	0.34	0.42	0.00	0.43
SDDSC188	599.84	600.14	0.30	0.44	0.05	0.56
SDDSC188	655.2	655.8	0.60	0.1	0.00	0.11
SDDSC188	657.3	657.5	0.20	0.46	0.00	0.47
SDDSC188	662	662.7	0.70	0.17	0.00	0.17
SDDSC188	671	671.5	0.50	0.18	0.01	0.21
SDDSC188	671.5	672	0.50	0.26	0.01	0.29

JORC Table 1

Section 1 Sampling Techniques and Data

Criteria

JORC Code explanation

Sampling techniques

- Nature and quality of sampling (e.g. cut channels, random channeling, standard measurement tools appropriate to the minerals under investigation, sondes, or handheld XRF instruments, etc.). These examples illustrate the meaning of sampling.
- Include reference to measures taken to ensure sample representativeness, including details of any measurement tools or systems used.
- Aspects of the determination of mineralization that are Material to the Mineral Resource estimate.
- In cases where 'industry standard' work has been done this would normally be appropriate. In other cases more explanation may be required, particularly if unusual features were encountered. Unusual commodities or mineralization associated with the deposit (e.g. gold that has inherent sampling problems. Unusual commodity nodules) may warrant disclosure of detailed information.

Criteria

JORC Code explanation

Drilling techniques

- Drill type (e.g. core, reverse circulation, open-hole hammer, etc.) and details (e.g. core diameter, triple or standard tube, depth type, whether core is oriented and if so, by what method, etc.)

Drill sample recovery

- Method of recording and assessing core and chip sample recovery and measures taken to maximise sample recovery and ensure representative sampling.
- Whether a relationship exists between sample recovery and any loss/gain of material and whether this is believed to have occurred due to preferential loss/gain of fine/coarse material.

Logging

- Whether core and chip samples have been geologically and geographically representative of the relevant intersections and support appropriate Mineral Resource estimation, mining studies and other relevant studies.
- Whether logging is qualitative or quantitative in nature. Core logging details, if any, and the total length and percentage of the relevant intersections logged.

Sub-sampling techniques and sample preparation

- If core, whether cut or sawn and whether quarter, half or all cut.
- If non-core, whether riffled, tube sampled, rotary split, etc. and details.
- For all sample types, the nature, quality and appropriateness of the sample preparation technique.
- Quality control procedures adopted for all sub-sampling stages.
- Measures taken to ensure that the sampling is representative, for instance results for field duplicate/second-half sampling.
- Whether sample sizes are appropriate to the grain size of the material.

Criteria

JORC Code explanation

Quality of assay data and laboratory tests

- The nature, quality and appropriateness of the assaying and the technique is considered partial or total.
- For geophysical tools, spectrometers, handheld XRF instruments, determine the analysis including instrument make and model applied and their derivation, etc.
- Nature of quality control procedures adopted (e.g. standards checks) and whether acceptable levels of accuracy (i.e. lack) established.

Verification of sampling and assaying

- The verification of significant intersections by either independent or duplicate assays.
- The use of twinned holes.
- Documentation of primary data, data entry procedures, data electronic) protocols.
- Discuss any adjustment to assay data.

Location of data points

- Accuracy and quality of surveys used to locate drill holes (core locations, workings and other locations used in Mineral Resource estimation).
- Specification of the grid system used.
- Quality and adequacy of topographic control.

Criteria

JORC Code explanation

Data spacing and distribution

- Data spacing for reporting of Exploration Results.
- Whether the data spacing and distribution is sufficient to establish the continuity appropriate for the Mineral Resource and Ore Reserve classifications applied.
- Whether sample compositing has been applied.

Orientation of data in relation to geological structure

- Whether the orientation of sampling achieves unbiased sampling, which this is known, considering the deposit type.
- If the relationship between the drilling orientation and the orientation is considered to have introduced a sampling bias, this should be explained.

Sample security

- The measures taken to ensure sample security.

Audits or reviews

- The results of any audits or reviews of sampling techniques and data used in the Exploration Results.

Southern Cross Gold (SXG) ASX Announcement

Section 2 Reporting of Exploration Results

Criteria

JORC Code explanation

Mineral tenement and land tenure status

- Type, reference name/number, location and ownership including agreements or arrangements with third parties such as joint ventures, partnerships, overriding royalties, native title interests, mining titles in wilderness or national park and environmental settings.
- The security of the tenure held at the time of reporting along with any known impediment to operating in the area.

Criteria

JORC Code explanation

Exploration done by other parties

- Acknowledgment and appraisal of exploration by other parties.

Geology

- Deposit type, geological setting and style of mineralization.

Drill hole Information

- A summary of all information material to the understanding of the exploration results of the following
- information for all Material drill holes:
 - easting and northing of the drill hole collar
 - elevation or RL (Reduced Level - elevation above sea level in metres) of the hole
 - dip and azimuth of the hole
 - down hole length and interception depth
 - hole length.
- If the exclusion of this information is justified on the basis that the information is not necessary and the exclusion does not detract from the understanding of the report, the Competent Person must explain why this is the case.

Criteria

JORC Code explanation

Data aggregation methods

- In reporting Exploration Results, weighting averaging techniques, maximum and/or truncations (e.g. cutting of high-grades) and cut-off grades are usually Material.
- Where aggregate intercepts incorporate short lengths of high-grade results and/or long lengths of low-grade results, the procedure used for such aggregation should be stated and the assumptions used for such aggregations should be shown in detail.
- The assumptions used for any reporting of metal equivalent values should be clearly stated.

Relationship between mineralization widths and intercept lengths

- These relationships are particularly important in the reporting of Exploration Results.
- If the geometry of the mineralization with respect to the drill hole angle is known, this should be reported.
- If it is not known and only the down hole lengths are reported, there should be an effect (e.g 'down hole length, true width not known').

Diagrams

- Appropriate maps and sections (with scales) and tabulations of intercepts should be presented for any significant discovery being reported. These should include, but not be limited to, plan view, collar locations and appropriate sectional views.

Balanced reporting

- Where comprehensive reporting of all Exploration Results is not practicable, results for both low and high-grades and/or widths should be practised to avoid misleading Exploration Results.

Other substantive exploration data

- Other exploration data, if meaningful and material, should be reported including but not limited to geological observations; geophysical survey results; geochemical survey results; method of treatment; metallurgical test results; bulk density, groundwater, geochemical characteristics; potential deleterious or contaminating substances.

Criteria	JORC Code explanation
Further work	<ul style="list-style-type: none">● The nature and scale of planned further work (e.g. tests for lateral extensions or large-scale step-out drilling).● Diagrams clearly highlighting the areas of possible extensions, including the main interpretations and future drilling areas, provided this information is not commercially sensitive.

To view the source version of this press release, please visit <https://www.newsfilecorp.com/release/279545>

Dieser Artikel stammt von [GoldSeiten.de](https://www.GoldSeiten.de)

Die URL für diesen Artikel lautet:

<https://www.goldseiten.de/artikel/684134-Southern-Cross-Gold-Drills-12.2-m--32.4-g--t-Gold-at-Golden-Dyke.html>

Für den Inhalt des Beitrages ist allein der Autor verantwortlich bzw. die aufgeführte Quelle. Bild- oder Filmrechte liegen beim Autor/Quelle bzw. bei der vom ihm benannten Quelle. Bei Übersetzungen können Fehler nicht ausgeschlossen werden. Der vertretene Standpunkt eines Autors spiegelt generell nicht die Meinung des Webseiten-Betreibers wieder. Mittels der Veröffentlichung will dieser lediglich ein pluralistisches Meinungsbild darstellen. Direkte oder indirekte Aussagen in einem Beitrag stellen keinerlei Aufforderung zum Kauf-/Verkauf von Wertpapieren dar. Wir wehren uns gegen jede Form von Hass, Diskriminierung und Verletzung der Menschenwürde. Beachten Sie bitte auch unsere [AGB/Disclaimer!](#)

Die Reproduktion, Modifikation oder Verwendung der Inhalte ganz oder teilweise ohne schriftliche Genehmigung ist untersagt!
Alle Angaben ohne Gewähr! Copyright © by GoldSeiten.de 1999-2026. Es gelten unsere [AGB](#) und [Datenschutzrichtlinien](#).